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Abstract

The human body is colonized by trillions of microorganisms, the vast majority of which reside in the

large intestine. This collection of bacteria, fungi, archaea and viruses is collectively called the gut

microbiome. Large enough to be considered its own organ, the gut microbiome has vast impacts on

every day human function, including digestion [64], the immune system [180], even the brain and

a host's mood [109]. New research also suggests the gut microbiome can modulate an individual's

response to anti-cancer immunotherapy [15, 35].

The anaerobic, nutrient rich environment of the mammalian intestine provides bacterial popula-

tions with everything needed to grow, proliferate and di�erentiate. While certain bacterial species

that inhabit the gut microbiome may live within the food we eat, many species are uniquely adapted

to the human intestine and do not live in other environments. The following conclusions logically

follow:

1. Bacteria uniquely adapted to the human gut must be transmitted between individuals.

2. The human body has the ability to acquire new microbes from the environment and other

individuals. Proper functioning of the gut microbiome is required for health, therefore this

process is bene�cial to the human body.

3. The gut microbiome is stable over time in most individuals, therefore selection takes place for

which microbes engraft in the gut long-term.

However, these conclusions raise many more questions about the acquisition and transmission of

gut microbes:

1. At what age do humans begin to acquire and develop a microbiome? At what age does

acquisition of new microbes slow down or stop?

2. Where do the new microbes colonizing an infant come from?

3. How are healthy, commensal microbes selected from pathogens?

4. Does transmission between individuals also spread fungi, archaea and phages?
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5. Does transmission occur at the community level, or is it a single species at a time?

Throughout my graduate work in Dr. Ami Bhatt's laboratory at Stanford University, I have

attempted to shed light on a small portion of the microbiome transmission problem. Using advanced

metagenomic sequencing techniques, I have tracked bacteria and phages down to the strain level to

understand if and how they pass between individuals. This research has been limited to transmission

between humans in non-experimental settings - no speci�c interventions or animal models were

used. In these observational studies, I desired to capture acquisition and transmission events as they

happened naturally by using the precise archaeological record stored in an individual's microbiome.

I hope that my modest contributions will advance the �eld, improve understanding of how humans

acquire and transmit members of their gut microbiota and provide stepping stones for future research

to expand upon my �ndings.

This thesis consists of 6 chapters:

1. An introduction explaining the overarching themes of acquisition and transmission in the hu-

man microbiome, and speci�cs that are not covered in the introduction of individual chapters.

2. \Intestinal microbiota domination under extreme selective pressures characterized by metage-

nomic read cloud sequencing and assembly," my �rst manuscript using advanced metagenomic

techniques to measure the microbiome of Hematopoietic Cell Transplantation (HCT) patients

as they experienced treatment with antibiotics.

3. \Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages,"

where I measured infant acquisition of crAss-like phages and showed that direct transmission

from the mother was likely responsible for colonization in 50% of infants.

4. \Rare transmission of commensal and pathogenic bacteria in the gut microbiome of hospitalized

adults," my �nal e�ort to measure transmission of bacteria between HCT patients who were

roommates in the hospital. Here, we provided high quality, time course resolved genomic

evidence for transmission of bacteria between the gut microbiome of adults, a �rst in the

academic literature.

5. \Building bioinformatics work
ows for scalability and reproducibility," some helpful tips and

methodologies I learned for conducting large-scale computational experiments and ensuring

that the work
ows are scalable and reproducible.

6. Future directions of my work, speculation on the results, and conclusions.
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Chapter 1

Introduction

1.1 The developing human microbiome and strain acquisi-

tion

The rate of change in an individual's microbiome is highest in the �rst few years of life [125].

Genomic characterization of paired mother and infant stool samples has shown that infants acquire

many of their �rst gut microbes via direct transmission from their mother [195, 13]. Mother-

infant transmission is important for seeding certain key microbes likeBi�dobacterium infantis , which

contains the unique ability to digest human milk oligosaccharides found in breast milk [103, 176].

Mother-infant transmission is important for the normal development of an infant's microbiome and

healthy infant development as well.

After the rapid period of microbiome modi�cation ceases in adolescence, humans may still rarely

acquire new microbial strains from sources like food, the environment, or other individuals. In some

cases, a drastic reshaping of the gut microbiome is achieved through Fecal Microbiota Transplanta-

tion (FMT), which is typically used as a treatment for Clostridiodes di�cile induced colitis [162].

Although FMT can be technically considered microbiome transmission, I will exclude it from further

considerations because it is not an event that occurs in the daily life of most individuals.

Individuals may also attempt to modify their microbiome through changes in diet. Genomic

evidence suggests that diet can lead to microbiome changes that are signi�cant, but temporary [85].

There has also been a rise in the use and availability of probiotic supplements in recent years. These

supplements are manufactured to contain high numbers of live bacteria in pre-de�ned quantities.

Probiotic use may result in decreased symptoms for indications like irritable bowel syndrome [201],

but the e�ect sizes in trials are generally smaller than claimed by probiotic manufacturers. Ad-

ditionally, most probiotic strains do not engraft long-term, and taking a probiotic may even slow

the gut microbiome's recovery from antibiotic treatment [167]. Somewhat worryingly, bloodstream

1
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infections have been shown to originate from probiotic supplements in certain cases [196].

Overall, the evidence for how human microbiomes acquire new strains after adolescence is limited.

While diet, environmental exposure or probiotic supplementation may have a short term impact,

there are not yet genomic studies addressing the question of how adults acquire new microbiome

strains that persist for the long term.

1.1.1 What is known about microbiome transmission between adults?

While mother-infant transmission of bacteria and phages is well-established, evidence for microbiome

transmission in adults is lacking or less clear. Early evidence using 16S rRNA sequencing showed

that cohabiting individuals may share gut bacteria [164], but the resolution provided by this method

is insu�cient to prove strain identity. More recent experiments from isolated communities in Fiji

showed that individuals living together have more similar microbiomes than those outside the group

[21]. While this work suggests that transmission between individuals is at play, the lack of time

course sampling and lack of assembled genome evidence weakens the conclusions. More convincing

evidence exists in model organisms like mice [108], but I maintain that genomically characterized,

time course resolved evidence for microbiome transmission in human adults did not exist prior to

this work.

1.1.2 Measuring transmission of the microbiome

In the Bhatt Lab's publications, we have analyzed microbiome transmission by advanced metage-

nomic sequencing techniques, including traditional Illumina short read, 10X Genomics Read Cloud

[19], and Nanopore long read sequencing [110]. These methods allow for assembly of complete

genomes from the microbes in a stool sample and enable strain-speci�c investigation into microbial

identities.

There are four levels of microbiome measurement that are relevant to investigating transmission:

1. Species level - attainable through short read sequencing and classifying reads against a database

of known microbes. If transmission between microbiomes is occurring, the same species needs

to be present in both locations.

2. Full genome level - short read and long read sequencing allows us to create representative

metagenome assembled genomes (MAGs) from a mixed microbial community. Comparing

MAGs gives information about the degree of identity between them. However, MAGs only

represent the dominant strain in a sample and are often confounded by assembly and binning

errors.

3. Strain level - attainable when you have an accurate representative MAG or isolate genome and

deep metagenomic sequencing (typically short read). When measuring strain-level variation
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in a metagenomic sample, each sequencing read is thought of as a single observation of a cell

in the sample. By aligning sequencing reads back to representative MAGs, you can measure

the fraction of the bacterial population that has a particular allele. Challenges with this

approach include picking the best reference genome, handling multi-mapping reads, and poorly

assembled or missing reference sequences.

4. Complete phased haplotypes: Using a long-read sequencing technique like Oxford Nanopore,

it's possible to phase bacterial strain haplotypes. This is the \holy grail" of strain-speci�c

analysis, and would give a complete picture of the stain populations and their relative frequen-

cies.

1.1.3 Determining transmission between two gut microbiome samples

In the abstract sense, strains colonizing two individuals recently after a transmission event should be

\the same," as they were derived from the same ancestral population. However, confounding factors,

including di�ering strain populations in the two samples, divergence in both strain populations

since the transmission event, and sequencing errors all make determining \the same" more di�cult.

Identity between two bacterial strains can also be measured in di�erent ways, depending on the

abundance, strain diversity and sequencing depth:

1. SNP-based comparison: by aligning sequencing reads from multiple samples to the same refer-

ence genome and calling SNPs, strains present in low abundance can be compared. While very

informative, SNP-based comparisons can miss structural variations, mobile genetic element

insertions and other large-scale events.

2. Assembled genome comparison: by assembling MAGs from two samples and aligning them,

the dominant strain in a sample can be compared. If an assembled genome has high identity,

a SNP comparison of the same strains will also result in high identity. Identical assembled

genomes signi�cantly adds to my con�dence that strains in two samples are identical.

3. Isolation, culture and sequencing: Isolating a collection of strains from each sample and se-

quencing them can reveal additional information beyond metagenomic sequencing. A com-

bination of metagenomics and culture has recently been used in strain-speci�c investigations

[2].

1.1.4 How close do strains need to be for them to be \the same?"

In the case of mother-infant transmission of crAssphage, it was clear when the assembled genomes

from mothers and infants were the same strain. There were typically 1-2 SNPs separating the 100kb



4 CHAPTER 1. INTRODUCTION

genomes from mother-infant pairs, and thousands of SNPs separating genomes from di�erent fami-

lies. The heatmap in Figure 3.1 makes this clear: the cases of mother infant crAssphage transmission

stand out as blocks of identity against the background.

Asking the same question in bacterial genomes for the HCT transmission work proved to be much

more di�cult. Bacterial genomes are 30-70x the size of the crAssphage genome, there are signi�cant

mobile genetic elements and repetitive regions that confound assembly, and strain diversity within the

population makes comparisons much more di�cult. The relatively simple methods I developed for

the crAssphage research failed on more complex bacterial genomes. I was in the process of developing

a method compatible with the high levels of bacterial strain diversity when I found a preprint from

Matt Olm introducing the software tool called inStrain[122]. InStrain shared many of my ideas about

comparing diverse bacterial populations and was implemented in a very computationally e�cient

manner. With this tool, I could skip the method development and get straight to investigating

interesting biology.

InStrain analyzes alignments of sequencing reads from two samples against the same reference

genome. The key metric is population average nucleotide identity, or popANI. Under this metric,

a SNP is only called when the two samples do not shareany alleles at a given site in the reference

genome. This is di�erent from consensus ANI (traditional SNP calling), where a SNP would be

called whenever the consensus position di�ers between two genomes. SNPs are called in far fewer

locations with popANI than conANI, therefore the popANI comparing two samples will always be

greater than or equal to the conANI.

If two strains are related by a transmission event, they descended from the same ancestral

population. Therefore, the popANI should approach 100%, but allowances have to be made for

sequencing errors and divergence since the transmission event. Therefore it's necessary to set a

threshold that is sensitive enough to capture all true cases of transmission, but speci�c enough to

reject cases where closely related strains are not identical by descent. Based on evaluations of the

same strain in time course samples from a single patient, as well as positive control cases where

transmission is expected to occur (mother-infant and FMT patient samples), I settled on a popANI

threshold of 99.999%. This means that two strains must have less than one di�erence out of every

one hundred thousand base pairs in the genome to be called the same. These SNP based comparisons

are not perfect, and will miss regions of the reference genome that are not covered with sequencing

reads (either due to the region missing in the sample, or poor coverage), new genomic insertions, or

large chromosomal rearrangements. Assembly-based approaches are required to catch these larger

events.

1.1.5 Strains matter in the microbiome

While \species" is the basic unit of microbial classi�cation, \strain" is the basic unit of microbiome

assembly. De�nitions vary, but species are thought to share 95% ANI [124]. How then, do you
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de�ne a strain? The right de�nition depends on the context. When searching for transmission, two

strains should be nearly 100% identical before being called "the same". In an experiment focused

on functional capabilities, such as antibiotic resistance, two strains might be called "the same" if

they have identical antibiotic resistance pro�les, even if the genomes were more divergent. In short,

microbiome analysis needs to be made strain-speci�c to truly understand the complex interactions

and capabilities of each unit.

An individual may have multiple di�erent strains of the same species colonizing their gut, each

with slightly di�erent functional capabilities. In healthy individuals, genetic diversity within a

species is stable on the scale of years [187]. Evolution within a strain population has its limits,

and large-scale changes in microbiome composition are usually due to colonization with new strains

rather than evolution of existing strains [54, 193].

Strain-speci�c microbiome analysis has only become common in the last few years, and methods

for measuring, quantifying and assembling genomes from individual strains continue to be developed.

I posit that many microbiome association experiments that have turned up null �ndings or failed

to replicate may be because these associations were conducted at the species level, while the actual

biological e�ect is occurring at the strain level. As modern methods develop and databases of MAGs

from diverse human microbiomes continue to grow, repeating some of these analyses at the strain

level may yield new �ndings.



Chapter 2

Intestinal microbiota domination

under extreme selective pressures

characterized by metagenomic read

cloud sequencing and assembly

The work in this chapter was presented in:

Kang, J.B.*, Siranosian, B.A.*, Moss, E.L., Banaei, N., Andermann, T.M., and Bhatt, A.S.

(2019). Intestinal microbiota domination under extreme selective pressures characterized by metage-

nomic read cloud sequencing and assembly. BMC Bioinformatics 20, 585.

2.1 Abstract

Low diversity of the gut microbiome, often progressing to the point of intestinal domination by a

single species, has been linked to poor outcomes in patients undergoing hematopoietic cell transplan-

tation (HCT). Our ability to understand how certain organisms attain intestinal domination over

others has been restricted in part by current metagenomic sequencing technologies that are typi-

cally unable to reconstruct complete genomes for individual organisms present within a sequenced

microbial community. We recently developed a metagenomic read cloud sequencing and assembly

approach that generates improved draft genomes for individual organisms compared to conventional

short-read sequencing and assembly methods. Herein, we applied metagenomic read cloud sequenc-

ing to four stool samples collected longitudinally from an HCT patient preceding treatment and over

the course of heavy antibiotic exposure. Characterization of microbiome composition by taxonomic

6
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classi�cation of reads reveals that that upon antibiotic exposure, the subject's gut microbiome expe-

rienced a marked decrease in diversity and became dominated by Escherichia coli. While diversity

is restored at the �nal time point, this occurs without recovery of the original species and strain-

level composition. Draft genomes for individual organisms within each sample were generated using

both read cloud and conventional assembly. Read clouds were found to improve the completeness

and contiguity of genome assemblies compared to conventional assembly. Moreover, read clouds

enabled the placement of antibiotic resistance genes present in multiple copies both within a single

draft genome and across multiple organisms. The occurrence of resistance genes associates with the

timing of antibiotics administered to the patient, and comparative genomic analysis of the various

intestinal E. coli strains across time points as well as the bloodstream isolate showed that the sub-

ject's E. coli bloodstream infection likely originated from the intestine. The E. coli genome from

the initial pre-transplant stool sample harbors 46 known antimicrobial resistance genes, while all

other species from the pre-transplant sample each contain at most 5 genes, consistent with a model

of heavy antibiotic exposure resulting in selective outgrowth of the highly antibiotic-resistant E.

coli. This study demonstrates the application and utility of metagenomic read cloud sequencing and

assembly to study the underlying strain-level genomic factors in
uencing gut microbiome dynamics

under extreme selective pressures in the clinical context of HCT.
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2.2 Introduction

Metagenomics involves the sequencing of a whole community of microorganisms directly from an

environmental sample, such as soil or the human intestinal tract, often without prior knowledge of

which species are present within the sample. In silico reconstruction of complete and contiguous

genomes for individual organisms within a sequenced population remains a major challenge in the

�eld of metagenomics. This is a challenging problem when using conventional shotgun short-read

sequencing and assembly methods because short reads alone may not be able to determine the correct

positions of DNA sequences that are both longer than the sequenced DNA fragment length (usually

50-300 base pairs) and present in multiple copies at di�erent locations in the metagenome. The

presence of such repeated regions (e.g. insertion sequences or the bacterial 16S rRNA gene) often

result in fragmented assemblies where multiple instances of the repeated sequence are collapsed into

a single contig instead of correctly placed in between unique 
anking regions in multiple genomic

locations.

Read cloud sequencing is a relatively new technique that was initially used in the context of

human genomics to phase haplotypes [203]. This method has also been termed \linked-read sequenc-

ing." The main di�erence between read cloud and conventional short-read sequencing is that read

cloud sequencing augments the library preparation stage to ultimately generate \read clouds," which

are shortread sequences annotated with long-range information in the form of molecular barcodes.

This is achieved by physically partitioning long DNA fragments into nanoliter-scale droplets and

subsequently tagging all sequencing reads originating from a long fragment with a droplet-speci�c

molecular barcode. Read cloud sequencing o�ers a favorable combination of long-range information,

high base call accuracy, high throughput, and low input DNA mass requirements [203]. The 10x Ge-

nomics Chromium platform is a commercially available read cloud library preparation system that

automates the pipetting steps necessary to generate the molecular barcodes. Recently, we developed

an approach to adapt read cloud sequencing for metagenomic applications. The resultant barcoded

data is deconvolved and genome draft assembly is achieved using a combination of existing standard

genome assemblers as well as a custom assembly tool called Athena [19]. We have recently applied

the approach to sequence ocean sediment samples and the healthy human microbiome, for which

it was able to generate contiguous draft genomes for individual organisms from bacterial mixtures

[19].

In this study, we investigate a clinical application of metagenomic read cloud sequencing in

the context of hematopoietic cell transplantation (HCT), which is a complex medical procedure

used in the treatment of hematologic disorders such as leukemia and lymphoma. During HCT,

patients initially undergo intensive treatment with chemotherapy and sometimes radiation therapy;

this `conditioning regimen' serves to prepare patients to receive a hematopoietic stem cell graft.

Multipotent hematopoietic stem cells derived from bone marrow, peripheral blood, or umbilical

cord blood are then infused into the patient to reconstitute all blood cell lines. The procedure can
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be curative but comes with high risk for complications, including infection and graft-versus-host

disease (GVHD), an in
ammatory disease where donor immune cells attack the recipient's healthy

tissue. Intestinal microbial dysbiosis preceding and following HCT has been found to be associated

with an increased risk for developing bloodstream infections [170]. Previous studies also show that

decreased intestinal diversity is associated with development of GVHD and higher overall mortality

in HCT [171]. Broad-spectrum antibiotics and other drugs administered during the course of HCT

can greatly change the composition of the gut microbiota. In some cases, such microbial dysbiosis

leads to domination of the intestine by a few or even a single genus or species, increasing the likelihood

of complications like bloodstream infections in these immunocompromised patients [170]. Intestinal

domination may happen because certain bacterial strains carry an advantage, such as antibiotic

resistance, that enables them to 
ourish after other antibiotic-sensitive commensal microbes are

eliminated. While intestinal domination is relatively common in this patient population, the process

by which it occurs is not well-understood.

Herein, we apply the metagenomic read cloud sequencing approach to patient stool samples

collected over multiple time points pre- and post-HCT to elucidate microbiome dynamics in response

to extreme selective pressures during HCT. We �nd that antibiotic exposure is associated with

intestinal domination by Escherichia coli in our study subject. Read cloud sequencing, but not short

read sequencing alone, was able to identify many antibiotic resistance genes within the dominating

strain of E. coli. Thus, we postulate that the gut domination observed was the consequence of

enhanced �tness of this organism in the presence of antibiotics.

2.3 Results

2.3.1 Microbiome composition and diversity across the clinical time course

Stool samples were collected from the patient over �ve time points spanning 70 days. The samples

(denoted A-E) correspond to days - 2, + 19, + 27, + 33, and + 68 relative to transplantation. Figure

1 plots the microbial diversity as measured by the Shannon diversity index as well as the species-

level taxonomic composition (from metagenomic classi�cation of conventional short-read data) of

the patient's gut microbiome over time in relation to when the patient was administered various

antibiotics. Across the time course spanning 70 days, Shannon diversity was found to decrease

markedly from time point A through a period of intestinal E. coli domination (samples C and D)

before completely recovering by time point E. The patient exhibits the E. coli gut domination after

the time of GVHD onset on day + 19 and before the clinical manifestation of theE. coli bloodstream

infection on day + 60. We calculated the Bray-Curtis dissimilarity index between pairs of samples

and performed Principal Coordinates Analysis (PCoA) to visualize microbiome composition (Fig.

2). Most of the variance in the PCoA plot is captured by the stark di�erence in E. coli -dominated

samples (C and D), as expected. Time points A and E are more similar than time points A and B,
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suggesting recovery of a similar microbial community. However, we note that time point B occurred

after the completion of the transplant and engraftment process, while the patient was exposed to

several antibiotic agents. Sample E also has signi�cant representation of species not found in time

point A, including a 16% fraction of Lactobacillus rhamnosus. Recovery of diversity and original

microbial community structure after HCT could occur through persistence of microbes in very low

fractions, acquisition of new microbes following the HCT process, or a combination of both. To

evaluate these options, we examined if microbial genomes assembled from identical organisms at

multiple timepoints had high nucleotide similarity (see Methods). Of species present at a relative

abundance greater than 2% in multiple samples, 8 species are present at time points A, B and E. Five

out of 8 species had> 99.9% nucleotide similarity between time points A and B, likely indicating the

same dominant strain is present at both time points. Lower A-B similarity for other species could

be the result of di�erent strain populations between time points or poor assembly, as these species

had < 1 Mb of assembled and aligned sequence. In all cases, sequences assembled from species

present at time points A and E had < 99.5% similarity. Interestingly, Enterococcus faeciumis >

99.9% similar between samples B, C and D, but much di�erent at time point E ( 96% similarity,

E compared to other time points). This suggests the same dominant strain ofEnterococcus faecium

is retained though the E. coli domination event, but a di�erent strain is acquired or dominant by

time point E. Similar results were achieved with short-read and Athena assemblies, when data were

available. Taken together, these results suggest that dominant original strains are not retained in the

microbiome through the clinical time course. However, this analysis cannot rule out lowly abundant

strains that did not contribute to the genome assembly, which could be present either before or after

the E. coli domination event.

2.3.2 Assembly of draft genomes

We separately performed both conventional short-read assembly (MEGAHIT) and read cloud assem-

bly (Athena) and binned the resulting contigs into draft genomes for individual organisms present

within each metagenomic sample (see Methods). We assessed the draft genome bins using CheckM

and de�ned \high-quality" bins as attaining > 90% completeness and< 5% contamination, following

a previously described standard [20]. By this standard, read cloud sequencing and Athena assembly

produced 16 high-quality draft genomes for time point A (listed in Table 1), whereas conventional

short-read sequencing and assembly produced 6 high-quality genomes. Binning results and assem-

bly metrics for Athena draft genomes generated for each time point can be found in Additional �le

2. Figure 3 shows a visual comparison of theE. coli draft genomes generated using read clouds

compared to conventional sequencing for time points C and D, whenE. coli comprises the most

abundant organism in the sample. Compared to the conventional assembly, the Athena assembly

demonstrated an order of magnitude increase in contig N50. An assembly's N50 is a metric of con-

tiguity de�ned as the length of the shortest sequence such that 50% of the entire assembled genome
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is included in contigs of greater or equal length (higher N50 indicates greater contiguity). The draft

genome for sample C was the most contiguous and completeE. coli assembly, containing 5.16 Mb of

sequence in 23 contigs with an N50 of 1.32 Mb. Overall, these results support our previous �nding

[19] that read cloud sequencing and Athena assembly improves the reconstruction of genomes of

individual organisms within microbial mixtures.

2.3.3 Detection of resistance genes

We aligned the predicted protein-coding sequences from the Athena-assembled metagenomes for sam-

ples A, C, D, and E against the Comprehensive Antibiotic Resistance Database (CARD) database,

which yielded 87 (71 unique), 72 (72 unique), 101 (86 unique) and 15 (11 unique) resistance genes,

respectively. Herein, we use the term resistance gene to refer to any gene present within the CARD

database, which comprises genes known to confer antibiotic resistance and regulators of such genes.

In the entire metagenome assembled for sample A, we detected several resistance genes present in

multiple copies: tetO (7 copies), cfxA3 (5 copies), mefA (3 copies), tetQ (3 copies), tet(40) (2 copies),

and ermF (2 copies). We found that copies of identical resistance genes occurred both within the

genome of the same organism and among di�erent organisms. For instance, tetO was present on

3 contigs that all belonged to the Lachnospiraceaebin, and it was also present in single copy in

draft genomes classi�ed asBlautia sp., Clostridium, Eubacterium rectale, and Ruminococcus gnavus.

Inspection of the genomic regions of the 3Lachnospiraceaecontigs containing tetO revealed that

the regions with the resistance gene share some homology but are not completely identical. Note

that no resistance gene duplication was observed for sample C. For sample D, a set of 13 resistance

genes (acrB, acrD, baeR, cpxA, CRP, emrB, emrR, marA, mdtB, mdtC, msbA, patA, and sul1)

was detected in the draft genomes of bothE. coli and K. pneumoniae. Although both organisms

share this same set of genes, we did not �nd evidence for horizontal gene transfer because the genes

themselves are not identical (di�erent numbers of mismatch from the reference), and the contigs

on which the genes are present have homology in the region of the resistance genes but are not

completely identical as determined by alignment dotplots of the contig pairs. For sample E, the

dfrF gene appeared in 5 distinct copies in 4 di�erent organism bins. Positive selection for the dfrF

gene may have potentially occurred given that trimethoprim was administered to the patient prior

to time point E. Performing the equivalent resistance gene analysis on the conventional sequencing

data for samples A, C, D and E revealed 27 (27 unique), 84 (84 unique), 94 (82 unique) and 9 (9

unique) resistance genes, respectively. Compared to read cloud assembly, a greater proportion of

resistance genes detected in the conventional data are unique (in single copy) within their assembly

as genes present in multiple copies are collapsed into a single sequence in the absence of barcode

information. The speci�c resistance genes detected within each read cloud and conventional sample

as well as alignment metrics are listed in Additional �le 3. These results show that the ability to

resolve numerous copies of the same resistance gene present in one or multiple distinct organisms
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within the proper genomic context is a notable technological advantage of the read cloud sequencing

over conventional methods.

2.3.4 Comparative genomic analysis of E. coli strains

We postulated that comparison of theE. coli draft genomes across time points would reveal genomic

di�erences between the E. coli assemblies. Assuming that the assembledE. coli genome for a

given time point represents the most abundant strain ofE. coli in the sample, signi�cant genomic

di�erences across time could indicate acquisition of a new strain, selection and subsequent outgrowth

of a previously low-abundance strain, or possible remodeling of the genome. We also hypothesized

that the particular strain of E. coli producing the bloodstream infection could be traced back to

the gut microbiome based on our previous �ndings in [168]. To assessE. coli strain similarities,

we aligned pairs ofE. coli draft genomes from the various stool time points and the bloodstream

isolate against each other (see Methods). Table 2 lists the average percent nucleotide identity, total

number of SNPs, and total bases aligned for each pair of genomes. We also included NCBIE.

coli S88 reference genome in the analysis to serve as a comparison to a strain that is also a known

extraintestinal pathogen but unrelated to our patient.

We discovered that the dominant intestinal E. coli strains present in samples A, C, and D contain

relatively few SNPs and share extremely high nucleotide identity.The number of SNPs ranged from

371 to 3811 (compared to 56,513 SNPs with the S88 reference) and percent nucleotide identity

ranged from 99.91 to 99.98% (compared to 98.61% identity with the S88 reference). Somewhat

interestingly, the bloodstream isolate (day + 60) genome most closely matched the draft genome

from sample C(day + 27) with 182 SNPs and 99.99% nucleotide identity,even though the patient's

clinical manifestation of bloodstream infection occurred after time point D (day + 33)with 3742

SNPs and 99.91% identity. The low number ofSNPs and high percent identity between the stool

sampleE. coli strains and the bloodstream isolate reveal that the sameE. coli strain existing in the

patient's intestine prior to HCT likely persisted in spite of antibiotics, expanded to dominate the

gut, and also eventually caused the patient's bloodstream infection. Our group initially analyzed

theshort-read libraries of these samples via an orthogonal bioinformatic approach as described in

[168], which also suggested that the intestine was the source of the bloodstream strain for this

patient.

In order to ascertain whether any large-scale genomic island incorporation or genomic remodeling

took place in the dominant E. coli strain over time, we visualized pairwise genome alignments of

the various strains as syntenic dotplots, which can compare two genomes to each other. Each

main axis represents the entire length of one genome being compared, and a colored dot is plotted

at regions where the genomic sequences match between the two genomes (areas of synteny). For

example, comparing two completely identical genomes would produce a dotplot with a perfectly

contiguous diagonal stretching from the bottom-left to top-right corners. Figure 4 shows the synteny
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dotplots comparing E. coli strains from sample A to sample D and comparing the bloodstream

isolate to sample C. Visual inspection of the plots showed no evidence for any large genomic island

incorporations. The lack of major discontinuities or inversions provide additional evidence that the

strains are genetically equivalent from a genome structure perspective across the various time points

and between the gut and the bloodstream.

2.3.5 Antibiotic resistance genes in pre-transplant E. coli strain

Given that the E. coli strain dominating the intestine likely originated from a single original strain

that persisted through the extreme selective pressures of antibiotic administration, we hypothesized

that the pre-transplant (time point A) strain harbored antibiotic resistance genes that potentially

aided its survival. By aligning the predicted protein-coding regions of the Athena-assembledE.

coli draft genome from sample A against the CARD database, we detected 46 known antibiotic

resistance genes (Table 3). Functional annotations of these genes revealed that the majority of genes

code for proteins related to drug e�ux pumps, and others encode known resistance mechanisms

to aminoglycosides, bacitracin, and polymyxin. There was also a gene (CTX-M-27) that confers

extended-spectrum beta-lactamase resistance.

Next, we evaluated the �tness of the pre-transplant E. coli strain to other organisms present

in the same stool sample at time point A by comparing the resistance gene content ofE. coli to

that of the other organisms. Out of the total 87 resistance genes detected in the entire metagenome

for sample A, 46 were localized to contigs in theE. coli draft genome bin. The remaining 41 genes

were distributed widely across many other organisms, with no individual bin containing greater than

5 resistance genes. The organisms containing the second-highest number of resistance genes (each

with 5 genes) were classi�ed at the genus level as Lachnospiraceae and Eubacterium. Because all

organisms with a near-complete draft genome possessed no more than 5 resistance genes, our results

support a model in which the particular E. coli strain present in the subject's microbiome prior to

transplant was able to achieve gut domination over other organisms due to the selective pressures

applied by antibiotics.

2.4 Discussion

Our results show that the metagenomic read cloud sequencing methodology allows for more compre-

hensive and contiguous recovery of individual bacterial genomes from a sequenced community within

the gut microbiome of an HCT patient. The improved assemblies allow for augmented detection of

antibiotic resistance genes that are present in multiple copies in the metagenome and facilitates com-

parative genomic analysis to ascertain strain similarity. Recovery of microbial diversity is expected

following HCT, but previous research has shown that the post-HCT microbiome is often di�erent

than the pre-HCT microbiome [136]. Our results corroborate these �ndings as microbiome diversity



14 CHAPTER 2. INTESTINAL MICROBIOTA DOMINATION DURING HCT

is restored at time point E without the recovery of the original species and strain-level composition.

We �nd that the assembled genomes for organisms present at time point E compared to other time

points are actually quite di�erent ( < 99.5 similarity for strains of the same species). Several potential

mechanisms could explain this �nding: for example, a new strain (either externally acquired or a

previously rare strain) may become dominant due to selective �tness advantage; alternatively, drug

exposure occur- ring over the clinical time course may drive widescale mutagenesis of the dominant

strain within these organisms.

Bacteroides was the most abundant genus in the subject's microbiome prior to transplantation

(sample A).The patient was then administered multiple antibiotics,and the microbiome concurrently

developed markedly decreased diversity until becoming dominated byE. coli.Previous studies have

established Bacteroides to be an abundant and prevalent genus in the healthy human gut microbiome;

conversely, healthy populations rarely exhibit gut domination by Proteobacteria like E. coli [98].By

characterizing the presence of antibiotic resistance genes in the gut metagenome, we discovered that

the E.coli strain present at time point A, before transplant and before any antibiotic administration,

already contained avast arsenal of antibiotic resistance genes. Increased �tness due to a greater

number of resistance mechanisms may have a�orded this particularE. coli strain a selectivead

vantage, enabling it to survive as other organisms were eliminated by the antibiotics.

In the setting of the speci�c antibiotics administered to the patient, the survival of the dominating

E. coli strain may be explained in part by the resistance genes detected in its genome. Preceding

the E. coli domination observed starting at time point C (day + 27), the patient had received

the following antibiotics in chronological order: cipro
oxacin (day - 2 to + 12), cefepime (day

+ 2 to 3), vancomycin (day + 2 to 9), meropenem (day + 3 to 17), daptomycin (day + 9 to

11), levo
oxacin (day + 17 to 32), and metronidazole (day + 21 to 33). The strain's observed

resistance to cipro
oxacin and levo
oxacin (members of the 
uoroquinolone class of antibiotics)

can potentially be explained by multidrug e�ux complexes AcrAB-TolC, AcrEF-TolC, EmrAB-

TolC, and MdtEF-TolC as well as multidrug resistance proteins MdtH and MdtM, which are all

annotated in CARD as potentially conferring 
uoroquinolone resistance. The observed resistance to

Piperacillin/tazobactam (a penicillin) and cefepime (a cephalosporin) may be attributed to CTX-

M-27. The patient's bloodstream infection was due to a highly resistant extended-spectrum beta-

lactamase (ESBL)E. coli bacteria, and most of the ESBLE. coli infections in the U.S. are accounted

for by CTX-M-type enzymes [39]. Our analysis did not identify resistance genes that can explain

the ability for this particular strain of E.coli to survive despite the use of meropenem; however, a

decrease in uptake of antibiotics due to a de�ciency of porin expression or bio�lm formation may

possibly be involved [116].E. coli possesses native resistance to daptomycin and vancomycin, which

both target Gram-positive organisms.

While this analysis follows a single HCT patient, our �ndings have broader clinical implications.
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We demonstrate that the intestinal microbiome of patients can act as a reservoir of antibiotic resis-

tance genes, which may govern which organisms are most predisposed to endure and dominate the

gut under the extreme selective pressure applied by antibiotics. Although broad-spectrum antibi-

otics remain a vital part of our medical armamentarium, the issue of increasing antibiotic resistance

strongly argues for their conscientious use. Antibiotics can both select for antibiotic resistance and

contribute to the loss of commensal organisms and resulting expansion of a few organisms or even

a single organism to the point of gut domination. Further studies are warranted to investigate

whether our �ndings generalize to other HCT patients as well. It is conceivable that the antibiotic

resistance gene potential of organisms present prior to transplantation can be used to predict or

explain eventual gut domination events or bloodstream infections. Additionally, it is important to

note that the resistance genes detected in this study are limited to known antibiotic resistance mech-

anisms present within the CARD database, and commensals likely have mechanisms of resistance

that remain unknown.

2.5 Conclusion

This case study serves as an example of how advanced DNA sequencing technologies can help to

illuminate complex biological phenomena occurring within real patients. We explore a clinical ap-

plication of our recently developed metagenomic read cloud sequencing and assembly approach to

study gut microbiome dynamics under the intense selective pressures caused by heavy antibiotic

administration in the context of HCT. Because intestinal domination has been linked to poor out-

comes in this patient population, we applied read cloud sequencing to longitudinal stool samples

of an HCT patient who developed E. coli gut domination and a subsequent bloodstream infection.

Read cloud sequencing and the Athena assembler provided a higher-resolution characterization of

microbiome dynamics surrounding the period of domination than conventional short-read sequenc-

ing alone, as it generated draft genomes for constituent organisms in the patient's microbiome with

greater completeness and contiguity. Moreover, the improved assembly using read cloud sequencing

enhanced our ability to assemble multiple copies of conserved and repeated sequences (e.g. antibiotic

resistance genes) within their proper genomic context.

The generation of high-quality assemblies enabled the genomic comparison of organisms over

time. We �nd that although microbial diversity recovers in our subject post-HCT, for most or-

ganisms the original dominant strains are not retained throughout the clinical time course. By

performing comparative genomic analysis on theE. coli strains between the gut microbiome across

time and the bloodstream, we found that a single highly resistant strain of E. coli originally re-

siding within the patient's baseline microbiome prior to HCT and antibiotic treatment persisted

to eventually dominate the subject's microbiome and also instigate the bloodstream infection. By

detecting known antibiotic resistance genes within the assembled genomes, we discovered that the
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E. coli strain present before transplant was armed with a large collection of resistance genes whereas

other organisms initially present in the same intestinal community lacked such extensive resistance

potential. These �ndings are aligned with a model in which the eventual gut domination by E. coli

can be attributed to its increased �tness compared to other organisms, leading to its outgrowth

under extreme selective pressures. A more comprehensive understanding of microbiome dynamics

occurring in HCT could potentially lead to the development of personalized antibiotic regimens based

on the gene content of microbial strains within an individual's microbiome or microbiome-related

treatments to improve patient outcomes by preserving or enhancing microbiota diversity during the

course of HCT.

2.6 Methods

2.6.1 Sample preparation and sequencing

As part of our original previously published investigation of bloodstream infections in HCT recipients

[168], we performed a retrospective cohort study, approved by the Stanford institutional review

board under IRB protocol #42053 (principal investigator: A.S.B.). Informed consent for weekly

stool sample collection on all Stanford HCT patients was obtained under protocol #8903 (principal

investigator: David Miklos). All fresh stool samples were placed at 4°C immediately upon collection,

aliquoted into 2 mL cryovial tubes within 24 h, and stored at -80 °C.

One study subject undergoing HCT was unique in having a simultaneousE. coli and Methicillin-

resistant Staphylococcus aureus(MRSA) bloodstream infection [168]. Furthermore, this patient also

had a total of �ve longitudinal stool samples (denoted A-E) in addition to the E. coli isolate cultured

from the bloodstream infection available for sequencing. While MRSA was not found in the patient's

stool sample, the E.coli bloodstream isolate appeared indistinguishable from the same strain in the

intestine using short-read sequencing [168]. We chose to further investigate this patient's samples

using read cloud sequencing for even more precise longitudinal strain-level analysis.

From the frozen stool samples, we isolated microbial cells from stool debris by di�erential cen-

trifugation following a previously described protocol [82]. 400 mg of frozen stool was vortexed with

1 mL 0.9% saline solution for 30 s, then centrifuged at 3000 rpm (645 g) for 2 min. The pellet

containing stool debris was discarded, and the supernatant was centrifuged at 10,000 rpm (7168 g)

for 3 min to spin down bacterial cells. The saline supernatant was discarded, and the di�erential

centrifugation process was repeated with 1 mL of phosphate-bu�ered saline (pH 7.4) to acquire a

puri�ed microbial pellet.

For read cloud sequencing, we extracted high-molecular weight DNA from the puri�ed microbial

pellet using the Gentra Puregene Yeast/Bacteria Kit following the manufacturer's protocol with the

following modi�cations to increase DNA yield: increased lytic enzyme volume to 5.0� L and increased

protein precipitation solution to 130 � L. For conventional sequencing, we extracted DNA directly
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from frozen stool using the Qiagen QIAamp DNA Stool Mini Kit modi�ed with an added step after

addition of bu�er ASL in which the samples underwent seven alternating 30s cycles of beating with 1

mm diameter zirconia beads in a bead beater (Biospec Products) and chilling on ice. The extracted

DNA was visualized by agarose gel electrophoresis, and concentration estimations were performed

for both Qiagen and Puregene DNA using Qubit 
uorometric quantitation. The concentration of

DNA extracted for time point B was too low to be used as input for read cloud sequencing; therefore,

the read cloud sample for time point B was excluded from downstream processing. For all other

time points, we removed small (< 10 kb) DNA fragments by size selection prior to read cloud library

preparation using a BluePippin agarose electrophoresis instrument.

The size-selected high-molecular-weight DNA was used as input for read cloud library prepa-

ration. We prepared 10x Chromium libraries using the Chromium instrument and reagents from

10x Genomics (Pleasanton, CA). Additionally, we prepared conventional Illumina Truseq libraries

for all �ve time points (A-E) as well as the bloodstream isolate according to the Illumina Truseq

Nano protocol. We quanti�ed library fragment size using a Bioanalyzer 2100 instrument (Agilent

Technologies). The four 10x Chromium libraries were multiplexed and sequenced on one lane of

Illumina HiSeq 4000 using 2Ö 150 bp paired-end reads (11-16 Gb of sequence coverage per library).

The Illumina Truseq stool libraries were multiplexed and sequenced on an Illumina HiSeq 4000

instrument using 2 Ö 101 bp reads (4-5 Gb of sequence coverage per library).

The bloodstream bacterial isolate ofE. coli was collected and stored by the Stanford Health

Care Clinical Microbiology lab, as part of the previously published investigation of bloodstream

infections in HCT recipients [168]. We extracted isolate DNA from colonies grown in small volume

liquid culture following the manufacturer's protocol for the Gentra Puregene Yeast/Bacterial Kit

and sequenced the Illumina Nextera XT library on an Illumina HiSeq 4000.

2.6.2 Quality control of reads

The samples were demultiplexed using Illumina's bcl2fastq v2.19. For the read cloud libraries,

we extracted the 16 bp 10x barcode from each read using the Long Ranger Basic pipeline (10x

Genomics). Next, we performed identical quality control and �ltering procedures for raw reads

generated from all stool libraries (both read cloud and conventional): read quality was assessed with

FastQC v0.11.4 [9] and quality trimming was performed with cutadapt v1.8.1 using a minimum

length of 60 (-m 60), minimum terminal Phred quality cuto� of 30 (-q 30, 30), and N-end trimming

(-trim-n) [104].

2.6.3 Taxonomic classi�cation of reads and diversity calculation

To measure the microbial composition of our short-read sequencing samples, we used the Kraken2

taxonomic sequence classi�er with default parameters [190] and a comprehensive database containing

all bacterial and archaeal genomes in Genbank assembled to \complete genome" or \chromosome"
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quality as of October 2018. Kraken2 classi�es individual reads by mapping all k-mers(k = 35) to the

lowest common ancestor genome in the database. Bracken [100] was then used to estimate species

abundance. The Shannon diversity index was calculated for each sample at the species level using

the R package Vegan (version 2.5-4) [120]. Shannon diversity was calculated on samples rare�ed to

7,360,000 paired-end reads,the number in the lowest covered �le.

2.6.4 Generation of organism draft genomes

We assembled the quality-controlled reads for both the read cloud and conventional libraries using

the short-read assembler MEGAHIT v1.1.3 [86], which �rst builds a succinct de Bruijn graph from

k-mers, then forms assembled contigs by �nding paths through the graph. We performed no further

assembly for the conventional samples (the MEGAHIT contigs constituted the �nal contigs compris-

ing the draft genomes). For read cloud samples, we used BWA v0.7.10 to perform sequence alignment

of the raw reads against the MEGAHIT contigs [88]. We then used the Athena assembler to further

assemble the MEGAHIT seed contigs. Athena takes as input the barcoded reads (FASTQ), the seed

contigs (FASTA), and the alignment �le (BAM), and it returns contigs assembled with read clouds

(see [19] for full details of Athena).

Next, we clustered the individual contigs generated from Athena into bins representing nearly

complete organism genomes. Binning was achieved by using four established metagenomic binning

tools: MetaBAT2 [73], MyCC [94], CONCOCT [6], and MaxBin 2.0 [192]. We then used DAS Tool

to integrate the results from the various binning methods to yield a single set of nonredundant bins

with maximal coverage of single-copy core genes [157]. We assigned a taxonomic classi�cation to

each individual contig using Kraken2 [190]. We assigned a taxonomic designation to an entire bin

if greater than 60% of contigs in the bin shared the same Kraken2 identi�cation. For each resulting

bin, which represents an organism draft genome, we used QUAST to assess the size and contiguity

of the assembly [60]. We used CheckM to calculate metrics of genome completeness (existence of

expected core genes) and contamination (duplication of core genes expected to exist in single copy)

for each draft genome [129]. We used the circlize package in R [58] to visualize and compare the

assemblies and Prokka [148] to predict the protein-coding genes in each contig.

2.6.5 Comparative genomic analysis

To quantify the similarity between the various E. coli strains across time points (A, C, and D)

and between the stool and bloodstream isolate, we used the NUCmer script within MUMmer v3.23

to perform pairwise alignment of the E. coli draft genomes from each pair of samples [37]. We

also included the full genome for extra-intestinal pathogenicE. coli strain S88 (NCBI accession

CU928161.2) in the analysis as a comparison. For each pair of assembled draft genomes of the

various E. coli strains, we calculated the percent nucleotide identity, number of single nucleotide

polymorphisms (SNPs), and total number of aligned bases. Additionally, we generated syntenic
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dotplots for each pairwise comparison using the mummerplot script with layout option (-l), which

reorders and orients the contigs to the main diagonal of the plot for optimal viewing [37].

A reference-guided assembly method was used to compare species present at multiple time points

when species were too lowly abundant to obtain unbiased bins. For both conventional and read cloud

sequencing, reads were aligned against the NCBI reference genome for a given species with BWA [88],

mapped reads were extracted with SAMtools [89] and assembled with metaSPAdes [118]. Athena

assembly was conducted on read cloud data. Resulting contigs were �ltered to a minimum length of

500 bp, and pairs of time points were aligned with MUMmer. Only alignments with > 100 kb 1-1

aligned sequence were reported.

2.6.6 Antibiotic resistance gene detection

We detected the presence of antibiotic resistance genes within contigs generated from each sample

by aligning the predicted protein-coding genes against the Comprehensive Antibiotic Resistance

Database (CARD), a curated database of genes known to be determinants of antibiotic resistance

[70]. The \protein homolog" model of the CARD database was used in order to minimize false

positives. We performed the alignment using DIAMOND [25] and �ltered the results to sequences

exceeding both 90% identity and 90% coverage of the reference sequence in CARD.

2.7 Figures
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Figure 2.1: A. Shannon diversity and composition of the intestinal microbiome of the study subject
across �ve time points over the course of HCT obtained from species-level taxonomic classi�cation of
conventional short-read samples. Each bar represents one stool sample, where colors represent dif-
ferent species and thickness indicates relative readcount attributed to that species within the sample
(proportion of total reads classi�ed to the species level). \Other" represents species comprising< 2%
readcount. Microbial diversity decreases to a period of domination byE. coli (time points C and D)
followed by recovery of diversity (time point E). B. Clinical time course of the study subject. The
x-axis denotes number of days after transplantation. Dates on which a stool sample was collected
are marked by red dots. Each row portrays the start and end date of administration of an antibiotic
(antibiotic class indicated by the color of the line). The timing of GVHD onset and bloodstream
infection (bacteremia) are marked
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Figure 2.2: Principal Coordinate Analysis (PCoA) of microbiome content classi�ed at the species
level (Bray-Curtis beta diversity metric). Most of the variation is captured in the x-axis and separates
E. coli dominated samples from the rest. Time points A and E are closer together than time point
B, showing the recovery of a similar microbiome community following transplant.
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Figure 2.3: Circos plot showing E. coli draft genomes for sample C (outer track) and D (inner
track) constructed with read clouds and Athena assembly (blue) compared to conventional short
reads and MEGAHIT assembly (dark grey). Athena assembly demonstrates enhanced contiguity
with an approximately 10-fold improvement in N50 for both samples compared to the conventional
assembly. Red dots mark genomic locations where resistance genes were detected. Red dots located
at breaks in the grey track identify resistance genes detected in the Athena assembly but were
missing from at least one of the short-read assemblies.
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