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Abstract

The human body is colonized by trillions of microorganisms, the vast majority of which reside in the

large intestine. This collection of bacteria, fungi, archaea and viruses is collectively called the gut

microbiome. Large enough to be considered its own organ, the gut microbiome has vast impacts on

every day human function, including digestion [64], the immune system [180], even the brain and

a host’s mood [109]. New research also suggests the gut microbiome can modulate an individual’s

response to anti-cancer immunotherapy [15, 35].

The anaerobic, nutrient rich environment of the mammalian intestine provides bacterial popula-

tions with everything needed to grow, proliferate and differentiate. While certain bacterial species

that inhabit the gut microbiome may live within the food we eat, many species are uniquely adapted

to the human intestine and do not live in other environments. The following conclusions logically

follow:

1. Bacteria uniquely adapted to the human gut must be transmitted between individuals.

2. The human body has the ability to acquire new microbes from the environment and other

individuals. Proper functioning of the gut microbiome is required for health, therefore this

process is beneficial to the human body.

3. The gut microbiome is stable over time in most individuals, therefore selection takes place for

which microbes engraft in the gut long-term.

However, these conclusions raise many more questions about the acquisition and transmission of

gut microbes:

1. At what age do humans begin to acquire and develop a microbiome? At what age does

acquisition of new microbes slow down or stop?

2. Where do the new microbes colonizing an infant come from?

3. How are healthy, commensal microbes selected from pathogens?

4. Does transmission between individuals also spread fungi, archaea and phages?
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5. Does transmission occur at the community level, or is it a single species at a time?

Throughout my graduate work in Dr. Ami Bhatt’s laboratory at Stanford University, I have

attempted to shed light on a small portion of the microbiome transmission problem. Using advanced

metagenomic sequencing techniques, I have tracked bacteria and phages down to the strain level to

understand if and how they pass between individuals. This research has been limited to transmission

between humans in non-experimental settings - no specific interventions or animal models were

used. In these observational studies, I desired to capture acquisition and transmission events as they

happened naturally by using the precise archaeological record stored in an individual’s microbiome.

I hope that my modest contributions will advance the field, improve understanding of how humans

acquire and transmit members of their gut microbiota and provide stepping stones for future research

to expand upon my findings.

This thesis consists of 6 chapters:

1. An introduction explaining the overarching themes of acquisition and transmission in the hu-

man microbiome, and specifics that are not covered in the introduction of individual chapters.

2. “Intestinal microbiota domination under extreme selective pressures characterized by metage-

nomic read cloud sequencing and assembly,” my first manuscript using advanced metagenomic

techniques to measure the microbiome of Hematopoietic Cell Transplantation (HCT) patients

as they experienced treatment with antibiotics.

3. “Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages,”

where I measured infant acquisition of crAss-like phages and showed that direct transmission

from the mother was likely responsible for colonization in 50% of infants.

4. “Rare transmission of commensal and pathogenic bacteria in the gut microbiome of hospitalized

adults,” my final effort to measure transmission of bacteria between HCT patients who were

roommates in the hospital. Here, we provided high quality, time course resolved genomic

evidence for transmission of bacteria between the gut microbiome of adults, a first in the

academic literature.

5. “Building bioinformatics workflows for scalability and reproducibility,” some helpful tips and

methodologies I learned for conducting large-scale computational experiments and ensuring

that the workflows are scalable and reproducible.

6. Future directions of my work, speculation on the results, and conclusions.
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Chapter 1

Introduction

1.1 The developing human microbiome and strain acquisi-

tion

The rate of change in an individual’s microbiome is highest in the first few years of life [125].

Genomic characterization of paired mother and infant stool samples has shown that infants acquire

many of their first gut microbes via direct transmission from their mother [195, 13]. Mother-

infant transmission is important for seeding certain key microbes like Bifidobacterium infantis, which

contains the unique ability to digest human milk oligosaccharides found in breast milk [103, 176].

Mother-infant transmission is important for the normal development of an infant’s microbiome and

healthy infant development as well.

After the rapid period of microbiome modification ceases in adolescence, humans may still rarely

acquire new microbial strains from sources like food, the environment, or other individuals. In some

cases, a drastic reshaping of the gut microbiome is achieved through Fecal Microbiota Transplanta-

tion (FMT), which is typically used as a treatment for Clostridiodes difficile induced colitis [162].

Although FMT can be technically considered microbiome transmission, I will exclude it from further

considerations because it is not an event that occurs in the daily life of most individuals.

Individuals may also attempt to modify their microbiome through changes in diet. Genomic

evidence suggests that diet can lead to microbiome changes that are significant, but temporary [85].

There has also been a rise in the use and availability of probiotic supplements in recent years. These

supplements are manufactured to contain high numbers of live bacteria in pre-defined quantities.

Probiotic use may result in decreased symptoms for indications like irritable bowel syndrome [201],

but the effect sizes in trials are generally smaller than claimed by probiotic manufacturers. Ad-

ditionally, most probiotic strains do not engraft long-term, and taking a probiotic may even slow

the gut microbiome’s recovery from antibiotic treatment [167]. Somewhat worryingly, bloodstream

1
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infections have been shown to originate from probiotic supplements in certain cases [196].

Overall, the evidence for how human microbiomes acquire new strains after adolescence is limited.

While diet, environmental exposure or probiotic supplementation may have a short term impact,

there are not yet genomic studies addressing the question of how adults acquire new microbiome

strains that persist for the long term.

1.1.1 What is known about microbiome transmission between adults?

While mother-infant transmission of bacteria and phages is well-established, evidence for microbiome

transmission in adults is lacking or less clear. Early evidence using 16S rRNA sequencing showed

that cohabiting individuals may share gut bacteria [164], but the resolution provided by this method

is insufficient to prove strain identity. More recent experiments from isolated communities in Fiji

showed that individuals living together have more similar microbiomes than those outside the group

[21]. While this work suggests that transmission between individuals is at play, the lack of time

course sampling and lack of assembled genome evidence weakens the conclusions. More convincing

evidence exists in model organisms like mice [108], but I maintain that genomically characterized,

time course resolved evidence for microbiome transmission in human adults did not exist prior to

this work.

1.1.2 Measuring transmission of the microbiome

In the Bhatt Lab’s publications, we have analyzed microbiome transmission by advanced metage-

nomic sequencing techniques, including traditional Illumina short read, 10X Genomics Read Cloud

[19], and Nanopore long read sequencing [110]. These methods allow for assembly of complete

genomes from the microbes in a stool sample and enable strain-specific investigation into microbial

identities.

There are four levels of microbiome measurement that are relevant to investigating transmission:

1. Species level - attainable through short read sequencing and classifying reads against a database

of known microbes. If transmission between microbiomes is occurring, the same species needs

to be present in both locations.

2. Full genome level - short read and long read sequencing allows us to create representative

metagenome assembled genomes (MAGs) from a mixed microbial community. Comparing

MAGs gives information about the degree of identity between them. However, MAGs only

represent the dominant strain in a sample and are often confounded by assembly and binning

errors.

3. Strain level - attainable when you have an accurate representative MAG or isolate genome and

deep metagenomic sequencing (typically short read). When measuring strain-level variation
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in a metagenomic sample, each sequencing read is thought of as a single observation of a cell

in the sample. By aligning sequencing reads back to representative MAGs, you can measure

the fraction of the bacterial population that has a particular allele. Challenges with this

approach include picking the best reference genome, handling multi-mapping reads, and poorly

assembled or missing reference sequences.

4. Complete phased haplotypes: Using a long-read sequencing technique like Oxford Nanopore,

it’s possible to phase bacterial strain haplotypes. This is the “holy grail” of strain-specific

analysis, and would give a complete picture of the stain populations and their relative frequen-

cies.

1.1.3 Determining transmission between two gut microbiome samples

In the abstract sense, strains colonizing two individuals recently after a transmission event should be

“the same,” as they were derived from the same ancestral population. However, confounding factors,

including differing strain populations in the two samples, divergence in both strain populations

since the transmission event, and sequencing errors all make determining “the same” more difficult.

Identity between two bacterial strains can also be measured in different ways, depending on the

abundance, strain diversity and sequencing depth:

1. SNP-based comparison: by aligning sequencing reads from multiple samples to the same refer-

ence genome and calling SNPs, strains present in low abundance can be compared. While very

informative, SNP-based comparisons can miss structural variations, mobile genetic element

insertions and other large-scale events.

2. Assembled genome comparison: by assembling MAGs from two samples and aligning them,

the dominant strain in a sample can be compared. If an assembled genome has high identity,

a SNP comparison of the same strains will also result in high identity. Identical assembled

genomes significantly adds to my confidence that strains in two samples are identical.

3. Isolation, culture and sequencing: Isolating a collection of strains from each sample and se-

quencing them can reveal additional information beyond metagenomic sequencing. A com-

bination of metagenomics and culture has recently been used in strain-specific investigations

[2].

1.1.4 How close do strains need to be for them to be “the same?”

In the case of mother-infant transmission of crAssphage, it was clear when the assembled genomes

from mothers and infants were the same strain. There were typically 1-2 SNPs separating the 100kb
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genomes from mother-infant pairs, and thousands of SNPs separating genomes from different fami-

lies. The heatmap in Figure 3.1 makes this clear: the cases of mother infant crAssphage transmission

stand out as blocks of identity against the background.

Asking the same question in bacterial genomes for the HCT transmission work proved to be much

more difficult. Bacterial genomes are 30-70x the size of the crAssphage genome, there are significant

mobile genetic elements and repetitive regions that confound assembly, and strain diversity within the

population makes comparisons much more difficult. The relatively simple methods I developed for

the crAssphage research failed on more complex bacterial genomes. I was in the process of developing

a method compatible with the high levels of bacterial strain diversity when I found a preprint from

Matt Olm introducing the software tool called inStrain[122]. InStrain shared many of my ideas about

comparing diverse bacterial populations and was implemented in a very computationally efficient

manner. With this tool, I could skip the method development and get straight to investigating

interesting biology.

InStrain analyzes alignments of sequencing reads from two samples against the same reference

genome. The key metric is population average nucleotide identity, or popANI. Under this metric,

a SNP is only called when the two samples do not share any alleles at a given site in the reference

genome. This is different from consensus ANI (traditional SNP calling), where a SNP would be

called whenever the consensus position differs between two genomes. SNPs are called in far fewer

locations with popANI than conANI, therefore the popANI comparing two samples will always be

greater than or equal to the conANI.

If two strains are related by a transmission event, they descended from the same ancestral

population. Therefore, the popANI should approach 100%, but allowances have to be made for

sequencing errors and divergence since the transmission event. Therefore it’s necessary to set a

threshold that is sensitive enough to capture all true cases of transmission, but specific enough to

reject cases where closely related strains are not identical by descent. Based on evaluations of the

same strain in time course samples from a single patient, as well as positive control cases where

transmission is expected to occur (mother-infant and FMT patient samples), I settled on a popANI

threshold of 99.999%. This means that two strains must have less than one difference out of every

one hundred thousand base pairs in the genome to be called the same. These SNP based comparisons

are not perfect, and will miss regions of the reference genome that are not covered with sequencing

reads (either due to the region missing in the sample, or poor coverage), new genomic insertions, or

large chromosomal rearrangements. Assembly-based approaches are required to catch these larger

events.

1.1.5 Strains matter in the microbiome

While “species” is the basic unit of microbial classification, “strain” is the basic unit of microbiome

assembly. Definitions vary, but species are thought to share 95% ANI [124]. How then, do you
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define a strain? The right definition depends on the context. When searching for transmission, two

strains should be nearly 100% identical before being called ”the same”. In an experiment focused

on functional capabilities, such as antibiotic resistance, two strains might be called ”the same” if

they have identical antibiotic resistance profiles, even if the genomes were more divergent. In short,

microbiome analysis needs to be made strain-specific to truly understand the complex interactions

and capabilities of each unit.

An individual may have multiple different strains of the same species colonizing their gut, each

with slightly different functional capabilities. In healthy individuals, genetic diversity within a

species is stable on the scale of years [187]. Evolution within a strain population has its limits,

and large-scale changes in microbiome composition are usually due to colonization with new strains

rather than evolution of existing strains [54, 193].

Strain-specific microbiome analysis has only become common in the last few years, and methods

for measuring, quantifying and assembling genomes from individual strains continue to be developed.

I posit that many microbiome association experiments that have turned up null findings or failed

to replicate may be because these associations were conducted at the species level, while the actual

biological effect is occurring at the strain level. As modern methods develop and databases of MAGs

from diverse human microbiomes continue to grow, repeating some of these analyses at the strain

level may yield new findings.



Chapter 2

Intestinal microbiota domination

under extreme selective pressures

characterized by metagenomic read

cloud sequencing and assembly

The work in this chapter was presented in:

Kang, J.B.*, Siranosian, B.A.*, Moss, E.L., Banaei, N., Andermann, T.M., and Bhatt, A.S.

(2019). Intestinal microbiota domination under extreme selective pressures characterized by metage-

nomic read cloud sequencing and assembly. BMC Bioinformatics 20, 585.

2.1 Abstract

Low diversity of the gut microbiome, often progressing to the point of intestinal domination by a

single species, has been linked to poor outcomes in patients undergoing hematopoietic cell transplan-

tation (HCT). Our ability to understand how certain organisms attain intestinal domination over

others has been restricted in part by current metagenomic sequencing technologies that are typi-

cally unable to reconstruct complete genomes for individual organisms present within a sequenced

microbial community. We recently developed a metagenomic read cloud sequencing and assembly

approach that generates improved draft genomes for individual organisms compared to conventional

short-read sequencing and assembly methods. Herein, we applied metagenomic read cloud sequenc-

ing to four stool samples collected longitudinally from an HCT patient preceding treatment and over

the course of heavy antibiotic exposure. Characterization of microbiome composition by taxonomic

6
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classification of reads reveals that that upon antibiotic exposure, the subject’s gut microbiome expe-

rienced a marked decrease in diversity and became dominated by Escherichia coli. While diversity

is restored at the final time point, this occurs without recovery of the original species and strain-

level composition. Draft genomes for individual organisms within each sample were generated using

both read cloud and conventional assembly. Read clouds were found to improve the completeness

and contiguity of genome assemblies compared to conventional assembly. Moreover, read clouds

enabled the placement of antibiotic resistance genes present in multiple copies both within a single

draft genome and across multiple organisms. The occurrence of resistance genes associates with the

timing of antibiotics administered to the patient, and comparative genomic analysis of the various

intestinal E. coli strains across time points as well as the bloodstream isolate showed that the sub-

ject’s E. coli bloodstream infection likely originated from the intestine. The E. coli genome from

the initial pre-transplant stool sample harbors 46 known antimicrobial resistance genes, while all

other species from the pre-transplant sample each contain at most 5 genes, consistent with a model

of heavy antibiotic exposure resulting in selective outgrowth of the highly antibiotic-resistant E.

coli. This study demonstrates the application and utility of metagenomic read cloud sequencing and

assembly to study the underlying strain-level genomic factors influencing gut microbiome dynamics

under extreme selective pressures in the clinical context of HCT.
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2.2 Introduction

Metagenomics involves the sequencing of a whole community of microorganisms directly from an

environmental sample, such as soil or the human intestinal tract, often without prior knowledge of

which species are present within the sample. In silico reconstruction of complete and contiguous

genomes for individual organisms within a sequenced population remains a major challenge in the

field of metagenomics. This is a challenging problem when using conventional shotgun short-read

sequencing and assembly methods because short reads alone may not be able to determine the correct

positions of DNA sequences that are both longer than the sequenced DNA fragment length (usually

50-300 base pairs) and present in multiple copies at different locations in the metagenome. The

presence of such repeated regions (e.g. insertion sequences or the bacterial 16S rRNA gene) often

result in fragmented assemblies where multiple instances of the repeated sequence are collapsed into

a single contig instead of correctly placed in between unique flanking regions in multiple genomic

locations.

Read cloud sequencing is a relatively new technique that was initially used in the context of

human genomics to phase haplotypes [203]. This method has also been termed “linked-read sequenc-

ing.” The main difference between read cloud and conventional short-read sequencing is that read

cloud sequencing augments the library preparation stage to ultimately generate “read clouds,” which

are shortread sequences annotated with long-range information in the form of molecular barcodes.

This is achieved by physically partitioning long DNA fragments into nanoliter-scale droplets and

subsequently tagging all sequencing reads originating from a long fragment with a droplet-specific

molecular barcode. Read cloud sequencing offers a favorable combination of long-range information,

high base call accuracy, high throughput, and low input DNA mass requirements [203]. The 10x Ge-

nomics Chromium platform is a commercially available read cloud library preparation system that

automates the pipetting steps necessary to generate the molecular barcodes. Recently, we developed

an approach to adapt read cloud sequencing for metagenomic applications. The resultant barcoded

data is deconvolved and genome draft assembly is achieved using a combination of existing standard

genome assemblers as well as a custom assembly tool called Athena [19]. We have recently applied

the approach to sequence ocean sediment samples and the healthy human microbiome, for which

it was able to generate contiguous draft genomes for individual organisms from bacterial mixtures

[19].

In this study, we investigate a clinical application of metagenomic read cloud sequencing in

the context of hematopoietic cell transplantation (HCT), which is a complex medical procedure

used in the treatment of hematologic disorders such as leukemia and lymphoma. During HCT,

patients initially undergo intensive treatment with chemotherapy and sometimes radiation therapy;

this ‘conditioning regimen’ serves to prepare patients to receive a hematopoietic stem cell graft.

Multipotent hematopoietic stem cells derived from bone marrow, peripheral blood, or umbilical

cord blood are then infused into the patient to reconstitute all blood cell lines. The procedure can
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be curative but comes with high risk for complications, including infection and graft-versus-host

disease (GVHD), an inflammatory disease where donor immune cells attack the recipient’s healthy

tissue. Intestinal microbial dysbiosis preceding and following HCT has been found to be associated

with an increased risk for developing bloodstream infections [170]. Previous studies also show that

decreased intestinal diversity is associated with development of GVHD and higher overall mortality

in HCT [171]. Broad-spectrum antibiotics and other drugs administered during the course of HCT

can greatly change the composition of the gut microbiota. In some cases, such microbial dysbiosis

leads to domination of the intestine by a few or even a single genus or species, increasing the likelihood

of complications like bloodstream infections in these immunocompromised patients [170]. Intestinal

domination may happen because certain bacterial strains carry an advantage, such as antibiotic

resistance, that enables them to flourish after other antibiotic-sensitive commensal microbes are

eliminated. While intestinal domination is relatively common in this patient population, the process

by which it occurs is not well-understood.

Herein, we apply the metagenomic read cloud sequencing approach to patient stool samples

collected over multiple time points pre- and post-HCT to elucidate microbiome dynamics in response

to extreme selective pressures during HCT. We find that antibiotic exposure is associated with

intestinal domination by Escherichia coli in our study subject. Read cloud sequencing, but not short

read sequencing alone, was able to identify many antibiotic resistance genes within the dominating

strain of E. coli. Thus, we postulate that the gut domination observed was the consequence of

enhanced fitness of this organism in the presence of antibiotics.

2.3 Results

2.3.1 Microbiome composition and diversity across the clinical time course

Stool samples were collected from the patient over five time points spanning 70 days. The samples

(denoted A-E) correspond to days - 2, + 19, + 27, + 33, and + 68 relative to transplantation. Figure

1 plots the microbial diversity as measured by the Shannon diversity index as well as the species-

level taxonomic composition (from metagenomic classification of conventional short-read data) of

the patient’s gut microbiome over time in relation to when the patient was administered various

antibiotics. Across the time course spanning 70 days, Shannon diversity was found to decrease

markedly from time point A through a period of intestinal E. coli domination (samples C and D)

before completely recovering by time point E. The patient exhibits the E. coli gut domination after

the time of GVHD onset on day + 19 and before the clinical manifestation of the E. coli bloodstream

infection on day + 60. We calculated the Bray-Curtis dissimilarity index between pairs of samples

and performed Principal Coordinates Analysis (PCoA) to visualize microbiome composition (Fig.

2). Most of the variance in the PCoA plot is captured by the stark difference in E. coli -dominated

samples (C and D), as expected. Time points A and E are more similar than time points A and B,
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suggesting recovery of a similar microbial community. However, we note that time point B occurred

after the completion of the transplant and engraftment process, while the patient was exposed to

several antibiotic agents. Sample E also has significant representation of species not found in time

point A, including a 16% fraction of Lactobacillus rhamnosus. Recovery of diversity and original

microbial community structure after HCT could occur through persistence of microbes in very low

fractions, acquisition of new microbes following the HCT process, or a combination of both. To

evaluate these options, we examined if microbial genomes assembled from identical organisms at

multiple timepoints had high nucleotide similarity (see Methods). Of species present at a relative

abundance greater than 2% in multiple samples, 8 species are present at time points A, B and E. Five

out of 8 species had > 99.9% nucleotide similarity between time points A and B, likely indicating the

same dominant strain is present at both time points. Lower A-B similarity for other species could

be the result of different strain populations between time points or poor assembly, as these species

had < 1 Mb of assembled and aligned sequence. In all cases, sequences assembled from species

present at time points A and E had < 99.5% similarity. Interestingly, Enterococcus faecium is >

99.9% similar between samples B, C and D, but much different at time point E ( 96% similarity,

E compared to other time points). This suggests the same dominant strain of Enterococcus faecium

is retained though the E. coli domination event, but a different strain is acquired or dominant by

time point E. Similar results were achieved with short-read and Athena assemblies, when data were

available. Taken together, these results suggest that dominant original strains are not retained in the

microbiome through the clinical time course. However, this analysis cannot rule out lowly abundant

strains that did not contribute to the genome assembly, which could be present either before or after

the E. coli domination event.

2.3.2 Assembly of draft genomes

We separately performed both conventional short-read assembly (MEGAHIT) and read cloud assem-

bly (Athena) and binned the resulting contigs into draft genomes for individual organisms present

within each metagenomic sample (see Methods). We assessed the draft genome bins using CheckM

and defined “high-quality” bins as attaining > 90% completeness and < 5% contamination, following

a previously described standard [20]. By this standard, read cloud sequencing and Athena assembly

produced 16 high-quality draft genomes for time point A (listed in Table 1), whereas conventional

short-read sequencing and assembly produced 6 high-quality genomes. Binning results and assem-

bly metrics for Athena draft genomes generated for each time point can be found in Additional file

2. Figure 3 shows a visual comparison of the E. coli draft genomes generated using read clouds

compared to conventional sequencing for time points C and D, when E. coli comprises the most

abundant organism in the sample. Compared to the conventional assembly, the Athena assembly

demonstrated an order of magnitude increase in contig N50. An assembly’s N50 is a metric of con-

tiguity defined as the length of the shortest sequence such that 50% of the entire assembled genome
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is included in contigs of greater or equal length (higher N50 indicates greater contiguity). The draft

genome for sample C was the most contiguous and complete E. coli assembly, containing 5.16 Mb of

sequence in 23 contigs with an N50 of 1.32 Mb. Overall, these results support our previous finding

[19] that read cloud sequencing and Athena assembly improves the reconstruction of genomes of

individual organisms within microbial mixtures.

2.3.3 Detection of resistance genes

We aligned the predicted protein-coding sequences from the Athena-assembled metagenomes for sam-

ples A, C, D, and E against the Comprehensive Antibiotic Resistance Database (CARD) database,

which yielded 87 (71 unique), 72 (72 unique), 101 (86 unique) and 15 (11 unique) resistance genes,

respectively. Herein, we use the term resistance gene to refer to any gene present within the CARD

database, which comprises genes known to confer antibiotic resistance and regulators of such genes.

In the entire metagenome assembled for sample A, we detected several resistance genes present in

multiple copies: tetO (7 copies), cfxA3 (5 copies), mefA (3 copies), tetQ (3 copies), tet(40) (2 copies),

and ermF (2 copies). We found that copies of identical resistance genes occurred both within the

genome of the same organism and among different organisms. For instance, tetO was present on

3 contigs that all belonged to the Lachnospiraceae bin, and it was also present in single copy in

draft genomes classified as Blautia sp., Clostridium, Eubacterium rectale, and Ruminococcus gnavus.

Inspection of the genomic regions of the 3 Lachnospiraceae contigs containing tetO revealed that

the regions with the resistance gene share some homology but are not completely identical. Note

that no resistance gene duplication was observed for sample C. For sample D, a set of 13 resistance

genes (acrB, acrD, baeR, cpxA, CRP, emrB, emrR, marA, mdtB, mdtC, msbA, patA, and sul1)

was detected in the draft genomes of both E. coli and K. pneumoniae. Although both organisms

share this same set of genes, we did not find evidence for horizontal gene transfer because the genes

themselves are not identical (different numbers of mismatch from the reference), and the contigs

on which the genes are present have homology in the region of the resistance genes but are not

completely identical as determined by alignment dotplots of the contig pairs. For sample E, the

dfrF gene appeared in 5 distinct copies in 4 different organism bins. Positive selection for the dfrF

gene may have potentially occurred given that trimethoprim was administered to the patient prior

to time point E. Performing the equivalent resistance gene analysis on the conventional sequencing

data for samples A, C, D and E revealed 27 (27 unique), 84 (84 unique), 94 (82 unique) and 9 (9

unique) resistance genes, respectively. Compared to read cloud assembly, a greater proportion of

resistance genes detected in the conventional data are unique (in single copy) within their assembly

as genes present in multiple copies are collapsed into a single sequence in the absence of barcode

information. The specific resistance genes detected within each read cloud and conventional sample

as well as alignment metrics are listed in Additional file 3. These results show that the ability to

resolve numerous copies of the same resistance gene present in one or multiple distinct organisms
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within the proper genomic context is a notable technological advantage of the read cloud sequencing

over conventional methods.

2.3.4 Comparative genomic analysis of E. coli strains

We postulated that comparison of the E. coli draft genomes across time points would reveal genomic

differences between the E. coli assemblies. Assuming that the assembled E. coli genome for a

given time point represents the most abundant strain of E. coli in the sample, significant genomic

differences across time could indicate acquisition of a new strain, selection and subsequent outgrowth

of a previously low-abundance strain, or possible remodeling of the genome. We also hypothesized

that the particular strain of E. coli producing the bloodstream infection could be traced back to

the gut microbiome based on our previous findings in [168]. To assess E. coli strain similarities,

we aligned pairs of E. coli draft genomes from the various stool time points and the bloodstream

isolate against each other (see Methods). Table 2 lists the average percent nucleotide identity, total

number of SNPs, and total bases aligned for each pair of genomes. We also included NCBI E.

coli S88 reference genome in the analysis to serve as a comparison to a strain that is also a known

extraintestinal pathogen but unrelated to our patient.

We discovered that the dominant intestinal E. colistrains present in samples A, C, and D contain

relatively few SNPs and share extremely high nucleotide identity.The number of SNPs ranged from

371 to 3811 (compared to 56,513 SNPs with the S88 reference) and percent nucleotide identity

ranged from 99.91 to 99.98% (compared to 98.61% identity with the S88 reference). Somewhat

interestingly, the bloodstream isolate (day + 60) genome most closely matched the draft genome

from sample C(day + 27) with 182 SNPs and 99.99% nucleotide identity,even though the patient’s

clinical manifestation of bloodstream infection occurred after time point D (day + 33)with 3742

SNPs and 99.91% identity. The low number ofSNPs and high percent identity between the stool

sampleE. coli strains and the bloodstream isolate reveal that the same E. coli strain existing in the

patient’s intestine prior to HCT likely persisted in spite of antibiotics, expanded to dominate the

gut, and also eventually caused the patient’s bloodstream infection. Our group initially analyzed

theshort-read libraries of these samples via an orthogonal bioinformatic approach as described in

[168], which also suggested that the intestine was the source of the bloodstream strain for this

patient.

In order to ascertain whether any large-scale genomic island incorporation or genomic remodeling

took place in the dominant E. coli strain over time, we visualized pairwise genome alignments of

the various strains as syntenic dotplots, which can compare two genomes to each other. Each

main axis represents the entire length of one genome being compared, and a colored dot is plotted

at regions where the genomic sequences match between the two genomes (areas of synteny). For

example, comparing two completely identical genomes would produce a dotplot with a perfectly

contiguous diagonal stretching from the bottom-left to top-right corners. Figure 4 shows the synteny
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dotplots comparing E. coli strains from sample A to sample D and comparing the bloodstream

isolate to sample C. Visual inspection of the plots showed no evidence for any large genomic island

incorporations. The lack of major discontinuities or inversions provide additional evidence that the

strains are genetically equivalent from a genome structure perspective across the various time points

and between the gut and the bloodstream.

2.3.5 Antibiotic resistance genes in pre-transplant E. coli strain

Given that the E. coli strain dominating the intestine likely originated from a single original strain

that persisted through the extreme selective pressures of antibiotic administration, we hypothesized

that the pre-transplant (time point A) strain harbored antibiotic resistance genes that potentially

aided its survival. By aligning the predicted protein-coding regions of the Athena-assembled E.

coli draft genome from sample A against the CARD database, we detected 46 known antibiotic

resistance genes (Table 3). Functional annotations of these genes revealed that the majority of genes

code for proteins related to drug efflux pumps, and others encode known resistance mechanisms

to aminoglycosides, bacitracin, and polymyxin. There was also a gene (CTX-M-27) that confers

extended-spectrum beta-lactamase resistance.

Next, we evaluated the fitness of the pre-transplant E. coli strain to other organisms present

in the same stool sample at time point A by comparing the resistance gene content of E. coli to

that of the other organisms. Out of the total 87 resistance genes detected in the entire metagenome

for sample A, 46 were localized to contigs in the E. coli draft genome bin. The remaining 41 genes

were distributed widely across many other organisms, with no individual bin containing greater than

5 resistance genes. The organisms containing the second-highest number of resistance genes (each

with 5 genes) were classified at the genus level as Lachnospiraceae and Eubacterium. Because all

organisms with a near-complete draft genome possessed no more than 5 resistance genes, our results

support a model in which the particular E. coli strain present in the subject’s microbiome prior to

transplant was able to achieve gut domination over other organisms due to the selective pressures

applied by antibiotics.

2.4 Discussion

Our results show that the metagenomic read cloud sequencing methodology allows for more compre-

hensive and contiguous recovery of individual bacterial genomes from a sequenced community within

the gut microbiome of an HCT patient. The improved assemblies allow for augmented detection of

antibiotic resistance genes that are present in multiple copies in the metagenome and facilitates com-

parative genomic analysis to ascertain strain similarity. Recovery of microbial diversity is expected

following HCT, but previous research has shown that the post-HCT microbiome is often different

than the pre-HCT microbiome [136]. Our results corroborate these findings as microbiome diversity
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is restored at time point E without the recovery of the original species and strain-level composition.

We find that the assembled genomes for organisms present at time point E compared to other time

points are actually quite different (< 99.5 similarity for strains of the same species). Several potential

mechanisms could explain this finding: for example, a new strain (either externally acquired or a

previously rare strain) may become dominant due to selective fitness advantage; alternatively, drug

exposure occur- ring over the clinical time course may drive widescale mutagenesis of the dominant

strain within these organisms.

Bacteroides was the most abundant genus in the subject’s microbiome prior to transplantation

(sample A).The patient was then administered multiple antibiotics,and the microbiome concurrently

developed markedly decreased diversity until becoming dominated by E. coli.Previous studies have

established Bacteroides to be an abundant and prevalent genus in the healthy human gut microbiome;

conversely, healthy populations rarely exhibit gut domination by Proteobacteria like E. coli [98].By

characterizing the presence of antibiotic resistance genes in the gut metagenome, we discovered that

the E.coli strain present at time point A, before transplant and before any antibiotic administration,

already contained avast arsenal of antibiotic resistance genes. Increased fitness due to a greater

number of resistance mechanisms may have afforded this particular E. coli strain a selectivead

vantage, enabling it to survive as other organisms were eliminated by the antibiotics.

In the setting of the specific antibiotics administered to the patient, the survival of the dominating

E. coli strain may be explained in part by the resistance genes detected in its genome. Preceding

the E. coli domination observed starting at time point C (day + 27), the patient had received

the following antibiotics in chronological order: ciprofloxacin (day - 2 to + 12), cefepime (day

+ 2 to 3), vancomycin (day + 2 to 9), meropenem (day + 3 to 17), daptomycin (day + 9 to

11), levofloxacin (day + 17 to 32), and metronidazole (day + 21 to 33). The strain’s observed

resistance to ciprofloxacin and levofloxacin (members of the fluoroquinolone class of antibiotics)

can potentially be explained by multidrug efflux complexes AcrAB-TolC, AcrEF-TolC, EmrAB-

TolC, and MdtEF-TolC as well as multidrug resistance proteins MdtH and MdtM, which are all

annotated in CARD as potentially conferring fluoroquinolone resistance. The observed resistance to

Piperacillin/tazobactam (a penicillin) and cefepime (a cephalosporin) may be attributed to CTX-

M-27. The patient’s bloodstream infection was due to a highly resistant extended-spectrum beta-

lactamase (ESBL) E. coli bacteria, and most of the ESBL E. coli infections in the U.S. are accounted

for by CTX-M-type enzymes [39]. Our analysis did not identify resistance genes that can explain

the ability for this particular strain of E.coli to survive despite the use of meropenem; however, a

decrease in uptake of antibiotics due to a deficiency of porin expression or biofilm formation may

possibly be involved [116]. E. coli possesses native resistance to daptomycin and vancomycin, which

both target Gram-positive organisms.

While this analysis follows a single HCT patient, our findings have broader clinical implications.
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We demonstrate that the intestinal microbiome of patients can act as a reservoir of antibiotic resis-

tance genes, which may govern which organisms are most predisposed to endure and dominate the

gut under the extreme selective pressure applied by antibiotics. Although broad-spectrum antibi-

otics remain a vital part of our medical armamentarium, the issue of increasing antibiotic resistance

strongly argues for their conscientious use. Antibiotics can both select for antibiotic resistance and

contribute to the loss of commensal organisms and resulting expansion of a few organisms or even

a single organism to the point of gut domination. Further studies are warranted to investigate

whether our findings generalize to other HCT patients as well. It is conceivable that the antibiotic

resistance gene potential of organisms present prior to transplantation can be used to predict or

explain eventual gut domination events or bloodstream infections. Additionally, it is important to

note that the resistance genes detected in this study are limited to known antibiotic resistance mech-

anisms present within the CARD database, and commensals likely have mechanisms of resistance

that remain unknown.

2.5 Conclusion

This case study serves as an example of how advanced DNA sequencing technologies can help to

illuminate complex biological phenomena occurring within real patients. We explore a clinical ap-

plication of our recently developed metagenomic read cloud sequencing and assembly approach to

study gut microbiome dynamics under the intense selective pressures caused by heavy antibiotic

administration in the context of HCT. Because intestinal domination has been linked to poor out-

comes in this patient population, we applied read cloud sequencing to longitudinal stool samples

of an HCT patient who developed E. coli gut domination and a subsequent bloodstream infection.

Read cloud sequencing and the Athena assembler provided a higher-resolution characterization of

microbiome dynamics surrounding the period of domination than conventional short-read sequenc-

ing alone, as it generated draft genomes for constituent organisms in the patient’s microbiome with

greater completeness and contiguity. Moreover, the improved assembly using read cloud sequencing

enhanced our ability to assemble multiple copies of conserved and repeated sequences (e.g. antibiotic

resistance genes) within their proper genomic context.

The generation of high-quality assemblies enabled the genomic comparison of organisms over

time. We find that although microbial diversity recovers in our subject post-HCT, for most or-

ganisms the original dominant strains are not retained throughout the clinical time course. By

performing comparative genomic analysis on the E. coli strains between the gut microbiome across

time and the bloodstream, we found that a single highly resistant strain of E. coli originally re-

siding within the patient’s baseline microbiome prior to HCT and antibiotic treatment persisted

to eventually dominate the subject’s microbiome and also instigate the bloodstream infection. By

detecting known antibiotic resistance genes within the assembled genomes, we discovered that the
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E. coli strain present before transplant was armed with a large collection of resistance genes whereas

other organisms initially present in the same intestinal community lacked such extensive resistance

potential. These findings are aligned with a model in which the eventual gut domination by E. coli

can be attributed to its increased fitness compared to other organisms, leading to its outgrowth

under extreme selective pressures. A more comprehensive understanding of microbiome dynamics

occurring in HCT could potentially lead to the development of personalized antibiotic regimens based

on the gene content of microbial strains within an individual’s microbiome or microbiome-related

treatments to improve patient outcomes by preserving or enhancing microbiota diversity during the

course of HCT.

2.6 Methods

2.6.1 Sample preparation and sequencing

As part of our original previously published investigation of bloodstream infections in HCT recipients

[168], we performed a retrospective cohort study, approved by the Stanford institutional review

board under IRB protocol #42053 (principal investigator: A.S.B.). Informed consent for weekly

stool sample collection on all Stanford HCT patients was obtained under protocol #8903 (principal

investigator: David Miklos). All fresh stool samples were placed at 4°C immediately upon collection,

aliquoted into 2 mL cryovial tubes within 24 h, and stored at -80 °C.

One study subject undergoing HCT was unique in having a simultaneous E. coli and Methicillin-

resistant Staphylococcus aureus (MRSA) bloodstream infection [168]. Furthermore, this patient also

had a total of five longitudinal stool samples (denoted A-E) in addition to the E. coli isolate cultured

from the bloodstream infection available for sequencing. While MRSA was not found in the patient’s

stool sample, the E.coli bloodstream isolate appeared indistinguishable from the same strain in the

intestine using short-read sequencing [168]. We chose to further investigate this patient’s samples

using read cloud sequencing for even more precise longitudinal strain-level analysis.

From the frozen stool samples, we isolated microbial cells from stool debris by differential cen-

trifugation following a previously described protocol [82]. 400 mg of frozen stool was vortexed with

1 mL 0.9% saline solution for 30 s, then centrifuged at 3000 rpm (645 g) for 2 min. The pellet

containing stool debris was discarded, and the supernatant was centrifuged at 10,000 rpm (7168 g)

for 3 min to spin down bacterial cells. The saline supernatant was discarded, and the differential

centrifugation process was repeated with 1 mL of phosphate-buffered saline (pH 7.4) to acquire a

purified microbial pellet.

For read cloud sequencing, we extracted high-molecular weight DNA from the purified microbial

pellet using the Gentra Puregene Yeast/Bacteria Kit following the manufacturer’s protocol with the

following modifications to increase DNA yield: increased lytic enzyme volume to 5.0 µL and increased

protein precipitation solution to 130 µL. For conventional sequencing, we extracted DNA directly
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from frozen stool using the Qiagen QIAamp DNA Stool Mini Kit modified with an added step after

addition of buffer ASL in which the samples underwent seven alternating 30s cycles of beating with 1

mm diameter zirconia beads in a bead beater (Biospec Products) and chilling on ice. The extracted

DNA was visualized by agarose gel electrophoresis, and concentration estimations were performed

for both Qiagen and Puregene DNA using Qubit fluorometric quantitation. The concentration of

DNA extracted for time point B was too low to be used as input for read cloud sequencing; therefore,

the read cloud sample for time point B was excluded from downstream processing. For all other

time points, we removed small (< 10 kb) DNA fragments by size selection prior to read cloud library

preparation using a BluePippin agarose electrophoresis instrument.

The size-selected high-molecular-weight DNA was used as input for read cloud library prepa-

ration. We prepared 10x Chromium libraries using the Chromium instrument and reagents from

10x Genomics (Pleasanton, CA). Additionally, we prepared conventional Illumina Truseq libraries

for all five time points (A-E) as well as the bloodstream isolate according to the Illumina Truseq

Nano protocol. We quantified library fragment size using a Bioanalyzer 2100 instrument (Agilent

Technologies). The four 10x Chromium libraries were multiplexed and sequenced on one lane of

Illumina HiSeq 4000 using 2 × 150 bp paired-end reads (11-16 Gb of sequence coverage per library).

The Illumina Truseq stool libraries were multiplexed and sequenced on an Illumina HiSeq 4000

instrument using 2 × 101 bp reads (4-5 Gb of sequence coverage per library).

The bloodstream bacterial isolate of E. coli was collected and stored by the Stanford Health

Care Clinical Microbiology lab, as part of the previously published investigation of bloodstream

infections in HCT recipients [168]. We extracted isolate DNA from colonies grown in small volume

liquid culture following the manufacturer’s protocol for the Gentra Puregene Yeast/Bacterial Kit

and sequenced the Illumina Nextera XT library on an Illumina HiSeq 4000.

2.6.2 Quality control of reads

The samples were demultiplexed using Illumina’s bcl2fastq v2.19. For the read cloud libraries,

we extracted the 16 bp 10x barcode from each read using the Long Ranger Basic pipeline (10x

Genomics). Next, we performed identical quality control and filtering procedures for raw reads

generated from all stool libraries (both read cloud and conventional): read quality was assessed with

FastQC v0.11.4 [9] and quality trimming was performed with cutadapt v1.8.1 using a minimum

length of 60 (-m 60), minimum terminal Phred quality cutoff of 30 (-q 30, 30), and N-end trimming

(-trim-n) [104].

2.6.3 Taxonomic classification of reads and diversity calculation

To measure the microbial composition of our short-read sequencing samples, we used the Kraken2

taxonomic sequence classifier with default parameters [190] and a comprehensive database containing

all bacterial and archaeal genomes in Genbank assembled to “complete genome” or “chromosome”
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quality as of October 2018. Kraken2 classifies individual reads by mapping all k-mers(k = 35) to the

lowest common ancestor genome in the database. Bracken [100] was then used to estimate species

abundance. The Shannon diversity index was calculated for each sample at the species level using

the R package Vegan (version 2.5-4) [120]. Shannon diversity was calculated on samples rarefied to

7,360,000 paired-end reads,the number in the lowest covered file.

2.6.4 Generation of organism draft genomes

We assembled the quality-controlled reads for both the read cloud and conventional libraries using

the short-read assembler MEGAHIT v1.1.3 [86], which first builds a succinct de Bruijn graph from

k-mers, then forms assembled contigs by finding paths through the graph. We performed no further

assembly for the conventional samples (the MEGAHIT contigs constituted the final contigs compris-

ing the draft genomes). For read cloud samples, we used BWA v0.7.10 to perform sequence alignment

of the raw reads against the MEGAHIT contigs [88]. We then used the Athena assembler to further

assemble the MEGAHIT seed contigs. Athena takes as input the barcoded reads (FASTQ), the seed

contigs (FASTA), and the alignment file (BAM), and it returns contigs assembled with read clouds

(see [19] for full details of Athena).

Next, we clustered the individual contigs generated from Athena into bins representing nearly

complete organism genomes. Binning was achieved by using four established metagenomic binning

tools: MetaBAT2 [73], MyCC [94], CONCOCT [6], and MaxBin 2.0 [192]. We then used DAS Tool

to integrate the results from the various binning methods to yield a single set of nonredundant bins

with maximal coverage of single-copy core genes [157]. We assigned a taxonomic classification to

each individual contig using Kraken2 [190]. We assigned a taxonomic designation to an entire bin

if greater than 60% of contigs in the bin shared the same Kraken2 identification. For each resulting

bin, which represents an organism draft genome, we used QUAST to assess the size and contiguity

of the assembly [60]. We used CheckM to calculate metrics of genome completeness (existence of

expected core genes) and contamination (duplication of core genes expected to exist in single copy)

for each draft genome [129]. We used the circlize package in R [58] to visualize and compare the

assemblies and Prokka [148] to predict the protein-coding genes in each contig.

2.6.5 Comparative genomic analysis

To quantify the similarity between the various E. coli strains across time points (A, C, and D)

and between the stool and bloodstream isolate, we used the NUCmer script within MUMmer v3.23

to perform pairwise alignment of the E. coli draft genomes from each pair of samples [37]. We

also included the full genome for extra-intestinal pathogenic E. coli strain S88 (NCBI accession

CU928161.2) in the analysis as a comparison. For each pair of assembled draft genomes of the

various E. coli strains, we calculated the percent nucleotide identity, number of single nucleotide

polymorphisms (SNPs), and total number of aligned bases. Additionally, we generated syntenic
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dotplots for each pairwise comparison using the mummerplot script with layout option (-l), which

reorders and orients the contigs to the main diagonal of the plot for optimal viewing [37].

A reference-guided assembly method was used to compare species present at multiple time points

when species were too lowly abundant to obtain unbiased bins. For both conventional and read cloud

sequencing, reads were aligned against the NCBI reference genome for a given species with BWA [88],

mapped reads were extracted with SAMtools [89] and assembled with metaSPAdes [118]. Athena

assembly was conducted on read cloud data. Resulting contigs were filtered to a minimum length of

500 bp, and pairs of time points were aligned with MUMmer. Only alignments with > 100 kb 1-1

aligned sequence were reported.

2.6.6 Antibiotic resistance gene detection

We detected the presence of antibiotic resistance genes within contigs generated from each sample

by aligning the predicted protein-coding genes against the Comprehensive Antibiotic Resistance

Database (CARD), a curated database of genes known to be determinants of antibiotic resistance

[70]. The “protein homolog” model of the CARD database was used in order to minimize false

positives. We performed the alignment using DIAMOND [25] and filtered the results to sequences

exceeding both 90% identity and 90% coverage of the reference sequence in CARD.

2.7 Figures
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Figure 2.1: A. Shannon diversity and composition of the intestinal microbiome of the study subject
across five time points over the course of HCT obtained from species-level taxonomic classification of
conventional short-read samples. Each bar represents one stool sample, where colors represent dif-
ferent species and thickness indicates relative readcount attributed to that species within the sample
(proportion of total reads classified to the species level). “Other” represents species comprising <2%
readcount. Microbial diversity decreases to a period of domination by E. coli (time points C and D)
followed by recovery of diversity (time point E). B. Clinical time course of the study subject. The
x-axis denotes number of days after transplantation. Dates on which a stool sample was collected
are marked by red dots. Each row portrays the start and end date of administration of an antibiotic
(antibiotic class indicated by the color of the line). The timing of GVHD onset and bloodstream
infection (bacteremia) are marked
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Figure 2.2: Principal Coordinate Analysis (PCoA) of microbiome content classified at the species
level (Bray-Curtis beta diversity metric). Most of the variation is captured in the x-axis and separates
E. coli dominated samples from the rest. Time points A and E are closer together than time point
B, showing the recovery of a similar microbiome community following transplant.
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Figure 2.3: Circos plot showing E. coli draft genomes for sample C (outer track) and D (inner
track) constructed with read clouds and Athena assembly (blue) compared to conventional short
reads and MEGAHIT assembly (dark grey). Athena assembly demonstrates enhanced contiguity
with an approximately 10-fold improvement in N50 for both samples compared to the conventional
assembly. Red dots mark genomic locations where resistance genes were detected. Red dots located
at breaks in the grey track identify resistance genes detected in the Athena assembly but were
missing from at least one of the short-read assemblies.
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Figure 2.4: Syntenic dotplots comparing E. coli strains across time points and between the intestine
and the bloodstream. Regions of sequence identity are marked by colored lines. A. Sample A draft
genome (x-axis) compared to sample D draft genome (y-axis). B. Bloodstream isolate genome (x-
axis) compared to sample C draft genome (y-axis). The near-perfect correspondence reveals that the
bloodstream isolate is concordant with and thus likely originated from the intestinal microbiome.
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2.8 Tables

Organism Size (Mb) Coverage Completeness Contamination N50

Catenibacterium sp. 2.57 50.16 100 0 160,908
Erysipelotrichaceae bacterium 4.33 50.59 100 3.77 498,545

Streptococcus thermophilus 1.74 21.49 99.89 0.58 49,696
Faecalibacterium prausnitzii 2.95 45.28 99.66 3.17 292,610

Eubacterium rectale 3.32 178.86 99.52 0.72 375,749
Flavonifractor plautii 3.6 52.02 99.33 0.81 983,109
Eubacterium (Genus) 2.91 29.92 99.33 2.68 148,852
Bacteroides vulgatus 5.35 629.82 98.5 0.19 502,539

Escherichia coli 4.96 20.48 98.4 0.58 70,983
Parabacteroides distasonis 5.28 77.48 98.27 0.83 455,277

Streptococcus parasanguinis 2.1 17.92 97.89 0 46,401
Clostridium sp. 3.08 18.87 97.63 0 42,920

Bifidobacterium longum 2.47 44.91 97.62 1.08 111,224
Blautia sp. 3.09 34.29 96.2 0 272,530

Bacteroides ovatus 5.98 56.70 94.61 1.87 529,675
Blautia sp. 3.16 26.35 92.83 2.22 140,920

Table 2.1: Athena draft genome assemblies generated for sample A

Draft genome 1 Draft genome 2 Aligned bases Percent identity Number SNPs

Assembly A Assembly C 4,965,009 99.98 371
Assembly C Assembly D 5,050,613 99.91 3811

Bloodstream isolate Assembly C 5,056,888 99.99 182
Bloodstream isolate Assembly D 5,002,210 99.91 3742

E. coli strain S88 (NCBI) Assembly C 4,410,742 98.61 56,513

Table 2.2: Comparison of E. coli strain similarities across time and spatial location
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Category Resistance Gene(s)

Beta-lactam resistance CTX-M-27
Aminoglycoside resistance kdpE
Polymyxin resistance arnA, pmrC, pmrE, pmrF
Bacitracin resistance bacA
Efflux pump complex or subunit acrA, acrB, acrD, acrE, acrF, emrA, emrB, emrD, emrE,

emrK, emrY, marA, mdfA, mdtA, mdtC, mdtE, mdtF,
mdtG, mdtH, mdtM, mdtN, mdtO, mdtP, msbA, msrB,
patA, TolC, YojI

Protein modulating antibiotic efflux acrS, baeR, baeS, cpxA, CRP, emrR, evgA, evgS, gadW,
gadX, H-NS

Table 2.3: Antibiotic resistance genes present in pre-transplant E. coli genome
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Acquisition, transmission and

strain diversity of human

gut-colonizing crAss-like phages

The work in this chapter was presented in:

Siranosian, B.A., Tamburini, F.B., Sherlock, G., and Bhatt, A.S. (2020). Acquisition, transmis-

sion and strain diversity of human gut-colonizing crAss-like phages. Nat Commun 11, 1-11.

3.1 Abstract

CrAss-like phages are double-stranded DNA viruses that are prevalent in human gut microbiomes.

Here, we analyze gut metagenomic data from mother-infant pairs and patients undergoing fecal

microbiota transplantation to evaluate the patterns of acquisition, transmission and strain diversity

of crAss-like phages. We find that crAss-like phages are rarely detected at birth but are increasingly

prevalent in the infant microbiome after one month of life. We observe nearly identical genomes in

50% of cases where the same crAss-like clade is detected in both the mother and the infant, suggesting

vertical transmission. In cases of putative transmission of prototypical crAssphage (p-crAssphage),

we find that a subset of strains present in the mother are detected in the infant, and that strain

diversity in infants increases with time. Putative tail fiber proteins are enriched for nonsynonymous

strain variation compared to other genes, suggesting a potential evolutionary benefit to maintaining

strain diversity in specific genes. Finally, we show that p-crAssphage can be acquired through fecal

microbiota transplantation.

26
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3.2 Introduction

In addition to trillions of bacteria, the human gastrointestinal tract is densely populated with bacte-

riophages. Bacteriophages can drive bacterial community composition and mediate horizontal gene

transfer[177], and alterations in the human gut virome have been associated with disease[26, 202].

However, our knowledge of the contributions of specific bacteriophages to human biology is limited,

in part due to the paucity of viral sequences represented in reference databases. High-throughput

sequencing and advanced genomic tools have facilitated the in silico discovery and characterization

of previously unknown bacteriophages. The preeminent example of such a discovery is crAssphage

(cross-Assembly phage), initially identified from human virome sequencing data[44]. A bacterio-

phage with a 97 kilobase circular, double-stranded DNA genome, crAssphage sequences are found

almost exclusively in human fecal metagenomes in diverse populations globally[59, 66, 106, 28], and

can be highly abundant. Initial estimates indicate that crAssphage is present in up to 73-77% of

humans[44, 59]. Given the near ubiquity of crAssphage and its apparent specificity to the human

gut, quantitative PCR assays have been developed to use crAssphage genes as markers for tracking

human fecal pollution in water and environmental samples[166, 91] and in human stool[30].

More recent investigations have shown that crAssphage is one member of a wide range of crAss-

like phages that exist in the human microbiome[59, 199]. In this manuscript, we adopt the taxonomic

classification system for crAss-like phages used in Guerin et al.[59], which proposed 4 subfamily

(Alpha, Beta, Gamma, Delta) and 10 cluster (1-10) designations based on shared protein coding

genes. The crAssphage first described by Dutilh et al.[44] belongs to the Alpha subfamily, cluster

1 and is given the designation prototypical crAssphage (p-crAssphage); we use p-crAssphage in all

further designations to avoid ambiguity. The genomes classified as crAss-like phages by Guerin et

al.[59] are diverse - members of the same cluster share at least 40% of protein coding genes, while

members of the same subfamily share only 20-40% of protein coding genes.

It is not known whether or how crAss-like phages influence host biology or disease [92, 45]. To

answer higher-order questions about the role of crAss-like phages in human biology, it is necessary

to establish basic principles of acquisition, persistence, and distribution. Although p-crAssphage

has been detected in infant gut metagenomes [106, 92], it is not yet known how crAss-like phages

are acquired in infancy. Infants acquire many of their first microbes, such as Bacteroides species,

from their mother during and after delivery[13, 195, 50, 40]. By contrast, it has been demonstrated

that adult twins and their mothers have unique gut viromes [140]. Given that Bacteroides species

are hypothesized to be the bacterial host(s) of p-crAssphage[44, 154], and the apparent specificity

of p-crAssphage to the human gut as opposed to other mammals or environmental samples, we

postulated that p-crAssphage is vertically transmitted from mother to infant, similar to what is

observed for many bacterial taxa and in contrast to what is reported for other members of the

human virome. To test this hypothesis, we examined publicly available shotgun metagenomic data

from two stool microbiome datasets15,16 consisting of samples from mothers and their infants (n =
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143 mother-infant pairs).

In this study, we find that p-crAssphage and other crAss-like phages are rarely detected in the

gut microbiome at birth but become detectable during the first year of life. We observe >99.5%

identical genome sequences in one half of cases where mothers and infants have the same crAss-like

phage, suggesting vertical transmission from mother to infant. Infants acquire a reduced diversity

population of p-crAssphage compared to their mother, but strain diversity expands upon coloniza-

tion. Finally, by examining shotgun metagenomic data from patients undergoing fecal microbiota

transplantation (FMT), we show that FMT recipients can acquire p-crAssphage with a nearly iden-

tical genome sequence as the stool donor. These results begin to uncover the principles of acquisition

and transmission of p-crAssphage and other crAss-like phages, which are the most prevalent human-

associated phages described, to date.

3.3 Results

3.3.1 Presence of p-crAssphage in mother and infant microbiomes.

We evaluated the presence and abundance of p-crAssphage in the microbiomes of mothers and

infants by classifying sequencing reads with Kraken2[190], using a database of all bacterial, viral and

fungal genomes in NCBI GenBank assembled to complete genome, chromosome or scaffold quality

as of February 2019 (see Methods). P-crAssphage is represented by a 97-kb genome (accession

NC 024711.1). Assigning absolute presence or absence of an organism in metagenomic sequencing

data is difficult and confounded by sequencing depth. Here, we consider samples with ≥1,000 reads

classified as p-crAssphage to be evidence for presence, as this corresponds to roughly 1x coverage

of the genome (assuming 100 bp reads and a 100-kb genome length). Samples from mothers and

infants had an average of 8.7 M reads after preprocessing, and the 1000 read coverage threshold

thus corresponds to an average relative abundance of 0.011%. Of note, this somewhat arbitrary

threshold, while fairly specific, renders our approach limited in sensitivity - that is, we do not report

on p-crAssphage when it is present at lower relative abundance.

Although p-crAssphage is highly abundant in the adult gut microbiome[59, 45] and has been

detected in infant gut microbiomes, it is unclear when or how it is acquired. Consistent with

previous studies describing low relative abundance or absence of p-crAssphage in the infant gut

microbiome[106, 93], we found 0 out of 22 infants have≥1000 p-crAssphage reads in samples collected

within 24 h of birth (Supplementary Data 1). P-crAssphage increases in prevalence as infants age: it

is detected in 3/35 (9%) infants from Yassour et al.[195] by three months and 16/100 (16%) infants

in Bäckhed et al.[13] by 12 months. P-crAssphage is more prevalent in adult mothers, where it

is detected in at least one sample from 8/35 (23%) and 25/100 (25%) of mothers in each study,

respectively (Supplementary Fig. 1). P-crAssphage is detected in both the mother and her infant

in ten cases, while 23/33 p-crAssphage positive mothers have a p-crAssphage negative infant, and
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9/19 p-crAssphage positive infants have a p-crAssphage negative mother.

The infant gut microbiome is strongly impacted by delivery mode, and it has been shown that

infants born by Cesarean section initially lack Bacteroides species[195, 40, 68, 151, 96]. In line with

the described effects of Cesarean section delivery and a hypothesized Bacteroidetes host, we found

that all 19 p-crAssphage positive infants were delivered vaginally, while all 21 infants delivered

through Cesarean section remained p-crAssphage negative. Although not significant when each

study is tested individually, the association between delivery mode and p-crAssphage presence is

significant when samples from the two studies are combined (p = 0.043, Fisher’s exact test). This

result contrasts with the findings of McCann et al.[106], where the authors found no association

between p-crAssphage relative abundance and delivery mode.

3.3.2 Putative vertical transmission of p-crAssphage.

Vertical transmission of gut microbes from mother to infant is common and well-described among

certain bacterial taxa[13, 195, 50, 10] . To test the hypothesis that p-crAssphage can be vertically

transmitted from mother to infant, we investigated metagenome-assembled p-crAssphage genomes

from ten p-crAssphage positive mother-infant pairs (see Methods). In six cases, mother-infant pairs

had nearly identical assembled sequences (families M0226, M0808, M1098, 335, 343, and 345; >99.7%

similarity). Two mother-infant pairs had assembled sequences more similar than unrelated pairs

(families 263 and 268; 98-99.2% similarity), and two mother-infant pairs had assembled sequences

that were no more similar than unrelated pairs (families 184 and 272; 96% similarity) (Fig. 1).

Overall, related mothers and infants harbor more closely related p-crAssphage sequences than unre-

lated mothers and infants (Supplementary Fig. 2a). When all samples with sufficient p-crAssphage

coverage were included in the assembly comparison, no pairs from unrelated individuals had >98%

similarity (Supplementary Fig. 3, Supplementary Data 3). Assembled p-crAssphage genomes were

high quality and contiguous: in the 29 samples from families with p-crAssphage found in mothers

and infants, the median contig N50 was 59.6 kb (standard deviation, SD = 41.4 kb), median number

of contigs was 3 (SD = 17) and median total assembled length was 96.3 kb (SD = 24.2 kb) (assembly

statistics reported in Supplementary Data 2). One-to-one pairwise alignments between assembled

sequences from mother-infant pairs had a median length of 85.8 kb (SD = 27.8 kb). In all, 22 sam-

ples assembled a nearly complete (>95 kb) p-crAssphage genome in a single contig. The assembled

genomes also share 91.2-97.6% nucleotide identity with the p-crAssphage reference genome, adding

confidence that they are truly representative assemblies. Next, we used a variant calling approach

to identify fixed SNPs compared to the p-crAssphage reference (see Methods). Pairs of samples

were compared at genomic sites covered ≥10x and used to construct a heatmap of SNP similarity.

The same six mother-infant pairs (M0226, M0808, M1098, 335, 343, and 345) had >99.5% SNP

similarity and continued to cluster together (Supplementary Fig. 4). Mother-infant pairs had higher

SNP identity than unrelated pairs on average (Supplementary Fig. 2b).
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3.3.3 Strain diversity in the p-crAssphage population.

Metagenomic assembly only represents the dominant allele at each position, and a fixed SNP com-

parison only considers sites that are identical across all strains present in a sample. To understand

the differing p-crAssphage strains present in the microbiome, we would ideally phase strain “haplo-

types” with a technology like long-read sequencing. With only short reads available, we examined

genomic positions that had multiple single nucleotide variant alleles called at high-quality (≥5 reads

for each allele, multiallelic sites) as a proxy for strain diversity. We report a normalized statistic

(Fmulti) to compare multiallelic sites across samples with highly variable coverage. At a given mi-

nor allele fraction (AF), Fmulti is the proportion of multiallelic sites with a minor AF > x among

those sites covered well enough to detect a minor AF of x. We calculated Fmulti for minor allele

fractions of 0.40, 0.30, 0.20, and 0.10 and compared across samples at a given minor AF value. At

every AF tested, infants as a group had a smaller fraction of multiallelic sites when compared to

mothers as a group. (Fig. 2a). In the three cases where we detected p-crAssphage in multiple

samples from the same infant, we found more multiallelic sites in later samples. We were typically

powered enough to detect multiallelic sites of the observed AF in earlier samples, but we cannot rule

out the possibility that newly observed variants are below our limit of detection in earlier samples.

Multiallelic sites in infants are often fixed sites in the p-crAssphage population of the mother (Fig.

2d, Supplemental Fig. 10). In contrast to infants, mothers from Yassour et al.[195] showed no

change in the proportion of multiallelic sites over the 6 month sampling period (Fig. 2b). We then

looked at multiallelic sites in mothers that are fixed in matched infant samples. In 2/3 cases where

we observed putative p-crAssphage transmission and the mother had ≥10 multiallelic sites, major

alleles are disproportionately detected in the child (Fig. 2c). Taken together, these results suggest a

few potential models: one is that infants acquire a single strain or limited diversity of p-crAssphage

strains. As the infant microbiome matures and diversifies with age, the p-crAssphage population

can evolve and acquire genetic diversity. Alternatively, a larger spectrum of p-crAssphage strains

than is detected may be harbored in a mother, with some strains below the limit of our detection.

These strains may experience less selective pressure in the infant than in the mother; thus, these

strains may be more numerous and easily detected in the infant than they are in the mother.

We continued to use multiallelic sites to investigate p-crAssphage strain diversity within an

individual. Mothers generally have limited strain diversity, with a median of 0.41 (SD = 7.5)

multiallelic sites per kb at AF > 0.1; variation in 0.04% of the genome. In a small number of cases,

we do observe samples with up to 100x more frequent multiallelic sites (Fig. 3a). This allelic variation

could be the result of many closely related strains existing together or a smaller number of more

divergent strains. Phasing strain “haplotypes” is necessary to distinguish between these possibilities.

Limited strain diversity suggest an exclusion principle, which favors mono- or oligo-colonization of

a particular p-crAssphage strain or closely related strains within the gut of an individual, though
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notably, a minority of individuals may be simultaneously colonized by multiple diverse strains. P-

crAssphage has fewer multiallelic sites on average compared to Lactococcus phages, which are the

only other group of phages detected at ≥1x coverage in at least ten samples. Using the reference

genome of the most frequently detected individual phage, Lactococcus phage 16802, 34 samples had

at least 1x

coverage; these samples had a median of 58.8 (SD = 14.7) multiallelic sites per kb at AF >

0.1 (Supplementary Fig. 9). We did not find assembled Lactococcus phage genomes with >99%

similarity between any samples from different individuals.

We next evaluated whether strain variation in the p- crAssphage population was the result of syn-

onymous or nonsynonymous genomic changes. Variant effects were predicted using the p-crAssphage

genome annotation from GenBank and SnpEff[31] (see Methods). We compared the proportion of

observed variant effects to a null model of equal probability of mutation at every base in the reference

genome. In samples from mothers, multiallelic sites with predicted nonsynonymous and nonsense

effects were less likely than expected under the null model, while synonymous sites were more likely

than expected (p < 1e-5 for each category, likelihood ratio test; Fig. 3b). An overrepresentation

of synonymous variants suggests that strain diversity in the p-crAssphage population of mothers is

enriched for neutral genetic variation, which may have been acquired over the relatively long time

the phages could have been present in the microbiome. In contrast to mothers, the predicted effects

of multiallelic sites in infants were indistinguishable from the null model (p > 0.05 for each effect

category, likelihood ratio test). This may suggest that multiallelic sites in infants arise randomly

and the forces acting to influence the distribution of predicted sites in mothers have not had time

to act on the infant’s p-crAssphage population yet. Alternatively, selective pressures acting on

p-crAssphage alleles may be entirely different in the infant and mother microbiomes. Comparing

mother and infant distributions showed that only the proportion of synonymous multiallelic sites

was significantly different between the two (p = 0.04, likelihood ratio test). We note that synony-

mous variants may not be truly neutral, as noncoding variants have been shown to affect translation

efficiency in bacteriophages[57].

In adults, we find wide variation in the number of multiallelic sites across the p-crAssphage

genome, with enrichment in the number of sites and the ratio of nonsynonymous to synonymous

variants corresponding to certain predicted genes (Fig. 4). Multi- allelic sites were detected in

80/88 predicted genes. When genes were ranked by the length-normalized number of nonsynony-

mous variants, “putative Tail sheath protein” was the top annotated gene, and other predicted tail

proteins also had high ratios (Supplemen- tary Data 4). Phage tail proteins are responsible for host

tropism;[55, 17, 145] therefore maintaining multiple functionally different alleles in the population

may be beneficial to expand the host range of p-crAssphage. Increased variation in tail fiber genes

was also found in an analysis of p-crAssphage genomes from South Africa[23]. The genes that were

least likely to have nonsynonymous multiallelic sites appear to be those that are critical for phage
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function, such as “putative portal protein”, “putative major capsid protein” and putative RNA

polymerase subunits. Interestingly, some of these genes correspond to peaks in the number of mul-

tiallelic sites detected, even though the variants had mostly synonymous predicted effects. Infant

samples have fewer multiallelic sites than mothers, with sites detected in 33/88 genes. “Putative ssb

single stranded DNA-binding protein” was the most enriched gene for nonsynonymous multiallelic

sites. Five out of ten tail fiber proteins had at least one nonsynonymous multiallelic variant in infant

samples, and the most frequently mutated tail fiber gene was “putative phage tail-collar fiber protein

(DUF3751),” a top hit in the adult samples (Supplementary Data 4).

3.3.4 Acquisition and transmission of crAss-like phages.

P-crAssphage is the first described member of an expanding group of crAss-like phages. Guerin

et al.[59] assembled 249 complete or near-complete crAss-like phage genomes out of metagenomic

sequencing datasets, which were then classified into four subfamilies (Alpha, Beta, Gamma, Delta)

and 10 clusters (1–10) based on shared protein coding genes. P-crAssphage is a member of cluster

Alpha 01. Given the observed sharing of p-crAssphage genome sequences by mother-infant pairs, we

were interested to determine if similar putative transmission events could also be observed for crAss-

like phages. We added the crAss-like genomes from Guerin et al.[59] to the Kraken2 viral reference

database in a hierarchy following the pro- posed subfamily and cluster designations (see Methods).

For clas- sification and transmission analyses, we carried out analyses at the level of crAss-like phage

clusters. A threshold of 1000 reads clas- sified to the same cluster (roughy 1x coverage) was treated

as evidence for presence.

Broadly, crAss-like phages are more frequently detected in the microbiome of mothers and infants

than p-crAssphage alone. In total, 7/36 (19%) infants from Yassour et al.[195] and 49/100 (49%)

infants from Bäckhed et al.[13] have at least one crAss-like cluster detected in at least one sample.

At least one cluster was detected in 33/43 (77%) and 88/100 (88%) of mothers from each study.

Mothers are most likely to be colonized by a single crAss-like phage cluster, although we observe

samples with up to 8 clusters detected (Supplementary Fig. 5). We do not observe any crAss-

like phage cluster present in infant samples taken within 24 h of birth. However, two infants from

Bäckhed et al.[13] have a crAss- like phage meeting the presence threshold in samples collected as

soon as 3 days after birth (samples 385 B and 633 B). This may represent the lower time limit for

the crAss-like phage and its bacterial hosts(s) to reach the detection threshold. The putative hosts of

crAss-like phages, members of the Bacteroidetes phylum, are known to be vertically transmitted[13,

195, 50, 10]. Thus, we hypothesized that crAss-like phages would be more frequently transmitted to

vaginally vs. Cesearan section born infants. We observed that all 19 p-crAssphage positive infants

were delivered vaginally, while all Cesarean section born infants remained p-crAssphage negative for

the duration of sampling. Although low sample numbers prevented this association from raising to

the level of significance when each cohort was tested individually, it was significant when samples
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from both cohorts were considered together (Bäckhed p = 0.12, Yassour p = 1, combined p = 0.043,

Fisher’s exact test). We also tested for associations in cases where at least 10 infants were positive

for a given crAss-like phage cluster. Presence of cluster Delta 07 (Bäckhed p = 0.009, Yassour p =

1, combined p = 0.007, Fisher’s exact test) and any crAss-like phage cluster (Bäckhed p = 0.004,

Yassour p = 0.32, combined p = 0.001, Fisher’s exact test) was significantly associated with vaginal

delivery (Supplementary Data 1). P-values are uncorrected for multiple hypothesis testing. No

significant associations between crAss-like phage presence and breastfeeding status were found.

Although a crAss-like phage similar to cluster Beta 06 phages was recently cultured on a Bac-

teroides intestinalis host[154], the hosts of other crAss-like phages have yet to be identified. We

searched for bacterial taxa that were differentially abundant between crAss-like phage positive and

negative infants to make inferences about potential hosts. Samples from vaginally born infants at

three or four months of age were included to allow comparisons across the two studies at a similar

time point. Bacterial relative abundances were transformed to centered log-ratios, and differential

abundance was calculated with the R package ALDEx2[49] (see Methods). P-values were calculated

with the two-sided Wilcoxon rank-sum test and corrected for multiple hypothesis testing34. Due to

limited sample numbers, we considered presence of any crAss-like phage as a group.

At the genus level, Collinsella was the most enriched taxon in infants positive for any crAss-like

phage (corrected p = 0.0167, twosided Wilcoxon test) (Supplementary Fig. 6, Supplementary Data

6). Several members of the Collinsella genus, including Collinsella aerofaciens (corrected p = 0.0239,

two-sided Wilcoxon test) were also the most enriched species in these infants. Certain species of the

genus Bacteroides were also significantly enriched to a lesser degree, such as Bacteroides massiliensis

(corrected p = 0.0499, twosided Wilcoxon test). Collinsella is a member of Actinobacteria, an entirely

different phylum than the posited Bacteroidetes hosts[44]. Collinsella was previously identified as

a signature of the developing anaerobic infant microbiome[13] , but further work is necessary to

determine if these species have a direct or indirect influence on the acquisition of crAss-like phages.

Next, we searched for putative mother-infant transmission of crAss-like phages. Depending on

the cluster, 0–16 families (median 2.5, SD = 5.1) have the same crAss-like phage cluster detected

in at least one mother and matched infant sample (Supplementary Data 5). We extended the

metagenomic assembly analysis above, using a pangenome compiled from all crAss-like genomes in

each cluster in place of the p-crAssphage reference. We find cases where mothers and infants share

an assembled genome with >99.7% identity and at least 20 kb of aligned sequence in 7/10 clusters.

As expected, candidate transmission events in cluster Alpha 01 matched p-crAssphage. Overall, we

observe putative transmission in 21/42 (50%) cases where mother and infant have the same crAss-

like phage cluster (Supplementary Data 5). In two families, we observed putative transmission of

two separate crAss-like phage clusters. 50% is likely an underestimate of the true transmission

rate, because many comparisons were limited by low sequencing depth and poorly assembled draft

genomes. Interestingly, a subset of infants have a crAss-like phage but their mothers do not. This
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could be due to waxing/waning amounts of crAss-like phages in mothers, as has been described in

adults[45]. If this is the case, the crAss-like phage may have been present in the mother at a level

lower than our limit of detection and thus may have been transmitted to the baby. Alternatively, the

baby may have acquired the crAss-like phage from an altogether different source, such as another

housemate or environmental source.

3.3.5 Similar p-crAssphage genomes found in FMT donors and recipients.

Another example of a perturbation where the gut microbiome, typically stable in adults, may ac-

quire a large number of new microbes is when individuals experience infection with the gut pathogen

Clostridium difficile, are treated with antibiotics, and subsequently receive fecal microbiota trans-

plantation (FMT) [162, 111]. Draper et al.[41] found that p-crAssphage relative abundance is de-

creased in individuals with recurrent C. difficile infection and that p-crAssphage could be trans-

planted from donor to recipient. However, strain-level transmission of p-crAssphage has not been

explored in this patient population. We examined metagenomic sequencing data from Smillie et

al.[162] and viral metagenomic sequencing data from Draper et al.[41] using the classification, as-

sembly and comparison methods described above.

In the data from Smillie et al.[162], we detect p-crAssphage at ≥1x coverage in samples from

two donors, MGH06D and MGH03D (Supplementary Data 1). 12 patients received stool prepa-

rations from either of those two donors. After FMT, 8/11 (73%) patients who received material

from donor MGH03D were positive for p-crAssphage, while the individual who received material

from donor MGH06D remained negative (Fig. 5a). Zero recipients who received FMT from a

p-crAssphage-negative donor acquired p-crAssphage during the sampling period. We compared as-

sembled p-crAssphage genomes from donors and recipients and found >99.8% identical sequences in

samples from MGH03D and recipients of this donor’s material, while samples from donor MGH06D

had a distinct p-crAssphage sequence (96.7% identity to MGH03D) (Supplementary Fig. 7). In-

terestingly, individuals MGH11R and MGH12R experienced dynamic p-crAssphage presence, with

the phage falling below and rising above the detection limit in subsequent samples. The assembled

genomes remained highly similar in each case, suggesting a waxing/waning p-crAssphage population

in individual MGH12R, who did not receive an additional FMT. In pre-FMT samples from recipi-

ents from this study, p-crAssphage was not detected, and only one sample was positive for a single

crAss-like phage (Supplementary Data 1). This suggests the phages are substantially diminished in

abundance when individuals are treated with drugs such as metronidazole, which has high activity

against Bacteroides species.

Draper et al.[41] specifically sequenced the amplified viral content of the metagenome, so we ad-

justed the detection threshold to 10,000 reads (10x coverage) to reduce the number of false positives.

P-crAssphage was detected in all 16 samples from donor D3 and 0/17 samples from donors D1 and

D2. No pre-FMT samples from C. difficile colitis affected patients were positive for p-crAssphage
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or any crAss-like phage (Supplementary Data 1). In total, 7/7 patients who received FMT from

donor D3 material became p-crAssphage positive; most remained positive for the 12 month duration

of sampling (Fig. 5b). Assembled p-crAssphage genomes from donor D3 and the seven recipients

had >99.5% nucleotide identity, suggesting colonization with the specific donor p-crAssphage strain

(Supplementary Fig. 8). Patient P7 became p-crAssphage positive with a genome 92% identical to

the other donor and patients. P7 received material from donor D1, who was p-crAssphage negative,

and therefore could have acquired the phage from a population below the detection limit in the

donor or another source following reestablishment of host bacterial populations. Patient P13 had

p-crAssphage present at 40x in a single sample, but the assembled genome only had a total length

of 12 kb and N50 of 2.8 kb. Samples with lower coverage assembled nearly complete p-crAssphage

genomes with N50 > 60 kb. It is thus possible that P13’s p-crAssphage detection is an artifact of

PCR amplification that is often used in the sequencing of virus-enriched samples. These data show

that p-crAssphage is frequently and efficiently transplanted via FMT and that p-crAssphage can

stably engraft in FMT recipients for up to one year.

3.4 Discussion

The in silico discovery of p-crAssphage and recent publication of hundreds of crAss-like phage

genomes has highlighted the diversity and global prevalence of these phages in human gut mi-

crobiomes[153]. CrAss-like phages have even been found in non- human primates[45], suggesting

these phages have been evolving alongside humans for millions of years. However, it is currently

unknown when and how an individual typically acquires crAss- like phages, as well as what level of

strain diversity exists within the microbiome of an individual. The datasets examined here[13, 195]

contain mother-infant pairs sampled extensively during the first year of life and represent a unique

opportunity to answer these questions.

We first characterized p-crAssphage and found no samples collected from infants within 24 h of

birth met our 1x coverage threshold. P-crAssphage becomes increasingly prevalent as infants age,

but does not reach the levels found in mothers by one year of life. The host(s) of p-crAssphage may

not be present or have reached sufficient abundance in some infants by the end of sample collection.

Infants acquire many of their gut bacteria through direct transmission from their mother, while gut

viromes have been shown to remain unique between family members and twins[140]. In contrast to

other members of the gut virome, we found nearly identical assembled p-crAssphage genomes in 6/10

cases where mothers and infants both harbor the phage, suggesting vertical transmission. However,

we cannot rule out alternative possibilities, such as transmission from a different family member

or from a common environmental source. We also observed cases where mothers and infants had

unrelated p-crAssphage genomes and cases where infants had p-crAssphage but it was undetectable

in the mother, which argue that the infants acquired p-crAssphage from an undetectable population
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in the mother or from another source.

It is currently unknown if individuals are typically colonized by a single or multiple p-crAssphage

strains, or how similar or different these strains may be. We characterized the strain diversity of

the p-crAssphage population in an individual by examining positions in the p-crAssphage genome

where we detected mul- tiple high-quality alleles. We found most mothers have a limited number of

variable sites, with a median frequency of 0.04% across the 97-kb p-crAssphage genome, arguing that

most mothers have a limited diversity of p-crAssphage strains. We did observe one mother with 100x

more frequent variable sites, however. Infants generally have an order of magnitude fewer variable

sites than mothers, suggesting a population that is further reduced in strain diversity, which may be

the result of a bottleneck event upon acquisition or transmission. P-crAssphage is significantly less

diverse than the second most abundant phage in these samples, Lactococcus phages 16802, where

variable sites are detected with a median frequency of 5.9%. In cases where we observed putative

mother-infant transmission, major alleles in the mother are pri- marily found in the infant, suggesting

the mother’s dominant strain is primarily responsible for colonizing the infant. The p-crAssphage

population in infants develops additional variable sites over time, often at positions where only single

alleles were detected in the mother. This could be due to the different bac- terial hosts, nutritional

sources and selective pressures in the infant microbiome, or simply due to random mutations.

In the most reductionist sense, two p-crAssphage genomes could differ at a single position and be

considered different strains. However, we are most interested in strain variation that has functional

consequences for the phage, its host or other members of the gut microbiome. Strain diversity in

the p-crAssphage population of mothers is enriched for variants with predicted synonymous effects.

However, we do observe enrich- ment for nonsynonymous (i.e. functional) variants in key genes,

including predicted tail fiber proteins. This suggests that there may be a benefit to maintaining

nonsynonymous allelic diversity in these genes, such as the ability to infect a broader range of hosts.

One isolated crAss-like phage[154] was noted to have a very specific host range, so variation in tail

fiber genes may allow these phage to infect an increased range of bacteria. Laboratory experiments

are necessary to further investigate this hypothesis, but could use exiting variation in the tail genes

as a starting point to screen for expanded host range.

P-crAssphage in infants has variable sites that are enriched for synonymous changes com- pared

to mothers, but limited sample numbers made it difficult to determine enrichment for specific genes.

P-crAssphage is the first described member of a diverse group of crAss-like phages5, with four

“family” level and ten “genus” level classifications. Similar to p-crAssphage, we observe a trend of

increasing prevalence with infant age for many clusters of crAss-like phages. Some clusters, such as

Alpha 03, are prevalent in mothers but rarely or never observed in infants, suggesting the hosts of

these phages have yet to reach sufficient abundance in the infant microbiome. We first observe a

crAss-like phage at 1x coverage in samples collected three days after birth. In the case of family 633,

the mother and three-day old infant have a Delta 07 phage with 99.3% alignment identity. Since
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we did not observe such early potential transmission events with p-crAssphage, this may represent

the first detectable transmission of any crAss-like phage from mother to infant, and a lower limit for

the time for a crAss-like phage to colonize the infant microbiome. Alternatively, crAss-like phages

may not colonize the infant microbiome at such an early time, rather, they may be acquired through

routes other than actual parturition. For example, the phages might be present in yet understudied

niches, such as the mother’s breast milk or the shared built environment of the baby and mother. Of

note, Bacteroides species, which are posited to be the natural host of p- crAssphage and are known

to be the host of a crAss-like phage[154] have previously been detected in breast milk[71]. Overall,

we find nearly identical genomes in 50% of cases when we detect the same cluster crAss-like phage

in both mother and infant, suggesting a transmission rate similar to p-crAssphage.

Regardless of the crAssphage status of the mother, we found a strong association of p-crAssphage

and crAss-like phage presence with vaginal delivery, in contrast to what has been described previ-

ously[106]. One potential explanation is that vaginal birth is responsible for transmitting the phage

from mother to infant. However, this is less likely in cases where infants harbor a phage undetected

in the mother. Another possible explanation is that vaginal birth is responsible for seeding bacteria

necessary for later colonization by crAss-like phages. Previous research found maternal seeding of

bacteria from the class Bacteroidia was inhibited by C-section birth, supporting this hypothesis[151,

79]. Future research with more balanced cohorts will likely clarify whether or not birth mode af-

fects crAss-like phage acquisition and transmission. Unexpectedly, microbiomes of vaginally born

infants positive for crAss-like phages were strongly enriched in Collinsella species. It is doubtful that

this finding suggests new hosts for crAss-like phages, rather, Collinsella may be a hallmark for a

developing and increasingly anaerobic infant microbiome that is capable of harboring these phages.

Finally, we observe that p-crAssphage is frequently transmitted via fecal microbiota transplan-

tation (FMT) and can engraft stably in FMT recipients for up to one year. Engraftment of bacteria

and phages has been well-studied in the case of FMT treatment for recurrent Clostridium difficile

infection, and transplantation of p- crAssphage has been identified previously[162, 111, 41]. Our

strain-level findings add new insight into the transmission of lytic bacter- iophages. We assembled

nearly identical genomes from both donors and recipients, highly suggestive of transmission of the

specific p-crAssphage strain. Taken together, the results from both populations suggest that infants

and patients receiving FMT have relatively unpopulated, naive microbiomes, providing an open

niche for p-crAssphage to engraft into.

While this study suggests new principles about acquisition and transmission of crAss-like phages

in the gut microbiome, it does have several limitations. First, we examined publicly available

metagenomic data and were therefore limited to the available study cohort and sample size. In the

mother-infant studies, stool samples were not collected from family members other than mothers,

which could help determine other contributions to crAss-like phage acquisition in infants. Also,
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many infant birth samples were limited by low sequencing depth. As such, the estimates for acqui-

sition and transmission presented here are likely underestimates. Sampling time points, processing

techni- ques and study populations were different between the two stu- dies, although both were

conducted in Northern European individuals. Second, short-read sequencing data limited our ability

to phase strain variants in the p-crAssphage genome. If the samples were resequenced with long-read

sequencing approa- ches41 , we could obtain single reads spanning many variable sites. This would

allow us to determine if the observed variants are the result of a smaller number of more divergent

strain populations, or a high number of closely related strains. Finally, our group has become aware

of false positive strain sharing results due to “barcode swapping” in dual-indexed Illumina sequenc-

ing librar- ies generated in our lab, which was first described in 2017[107]. As the indexing strategy

was not reported for the public data we analyzed in this manuscript, we cannot be certain that the

find- ings presented are not the result of this artifact. However, we believe our results, where only

matched mother-infant pairs and matched FMT donor-recipient pairs share highly related crAss-

like phage sequences, are unlikely to be explained by barcode swapping alone. The detrimental effect

of barcode swapping also highlights the importance of reporting index sequences as a key part of

making data publicly available.

Future work expanding on our findings should be directed towards answering several important

questions. How stable are crAss-like phages transmitted from mother to infant over time? Are they

lifelong inhabitants that, barring heavy antibiotic use, can be transmitted for generations? Are there

exclusion principles that prevent the acquisition of a second, more divergent p-crAssphage strain?

Additionally, our strain diversity analysis focused on p-crAssphage, but a wealth of diversity is also

present in crAss-like phages. Better genome annotations and more con- crete principles surrounding

the identity and taxonomy of crAss- like phages will enable this research, and isolating, culturing and

characterizing new crAss-like phages is a key next step. Finally, long-read metagenomic sequencing

will enable better analysis of the strain populations among crAss-like phages in the mixed community

of the microbiome. The ubiquity, distinct genome composition and ease of computational analysis

with crAss-like phages may render them useful models for querying microbial transmission more

broadly. Future work remains to determine precisely whether, and how, crAss-like phages influence

the gut ecosystem and ultimately human health.

3.5 Methods

Sequence read preprocessing. Raw sequencing reads from Bäckhed et al.[13] and Yassour et al.[195]

were downloaded from SRA from each sample and preprocessed in a consistent way: TrimGalore

version 0.5.0[81] was used to perform quality and adapter trimming with the flags “-clip R1 15-

clip R2 15-length 60”. SeqKit version 0.9.1[152] was used to remove duplicates with the command
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“seqkit rmdup-by-seq”. Reads were mapped against the human genome using BWA version 0.7.17-

r1188[87] and only unmapped reads were retained. Many infant samples at birth had low read counts

after preprocessing, and samples with fewer than 10,000 reads were removed from all subsequent

analyses. This left 135 families with sufficient depth in at least one sample from mother and infant.

3.5.1 Kraken2 classification.

For classification of p-crAssphage, we built a Kraken2[190] database containing all bacteria, viral and

fungal genomes in NCBI GenBank assembled to complete genome, chromosome or scaffold quality

as of February 2019. Human and mouse reference genomes were also included in the database. A

Bracken[100] database was also built with a read length of 150 and k-mer length of 35. P-crAssphage

is represented by a 97-kb genome (accession NC 024711.1). Multiple crAss-like phages are present in

GenBank and would cause reads mapping to multiple genomes to be classified at the least common

ancestor of “crAss-like viruses.” To prevent this from happening, other crAss-like genomes were

removed from the database.

For classification of crAss-like phages, we added to the viral database, replacing the original

“crAss-like viruses” clade with genomes in the proposed subfamily and cluster hierarchy described

in Guerin et al.[59]. Kraken2 was used with default classification parameters on paired-end reads.

For testing associations between crAss-like phage presence and other bacterial taxa, reads were

classified by using Kraken2 with default parameters on paired-end reads, and Bracken was used for

abundance estimation with the parameters “-r 150 -l S -t 10”.

3.5.2 Assembling and comparing crAss-like phage genomes.

Preprocessed sequencing reads were assembled with SPAdes version 3.13.1[117] using the ‘-meta’

flag. Contigs ≥500 bp were aligned with BWA against either the p-crAsspahge reference genome

or composite genomes from all the crAss-like phages in a cluster from Guerin et al.[59]. Resulting

contigs were assessed for their N50 and total assembly length. Pairwise comparisons were conducted

with nucmer version 4.0.0beta2[102] and the average identity and total length of 1-1 aligned segments

was reported. The heatmap in Fig. 1 was clustered on the euclidean distance between samples with

the ward.d2 clustering method and plotted with the heatmap.2 function in the gplots package for

R[183].

3.5.3 SNPs and multiallelic sites.

SNPs were called with Snippy[147] with freebayes[53] as the variant caller using the p-crAssphage

reference at sites covered ≥10x. Filtering, decomposition and normalization of variants was necessary

to compare between samples and was conducted with vt version 0.5[169] and bcftools version 1.9[89].

The output of snippy, snps.raw.vcf, was used in this command: “vt decompose -s snps. raw.vcf —
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vt decompose blocksub -a - — bcftools norm -f crassphage reference.fasta -m -any — bcftools view-

include ‘QUAL ≥ 100 && FMT/DP ≥ 10 && (FMT/AO)/ (FMT/DP) ≥ 0’”. We calculated the

transition/transversion ratio of detected variants using vcftools[34] version 0.1.16. Considering all

detected variants agnostic of samples, the transition/transversion ratio is 2.91 for all SNPs, 2.41

for fixed SNPs after variant decomposition and 2.42 for multiallelic SNPs at >0.1 AF after variant

decomposition. Considering samples individually, the median Ts/Tv ratios are 3.40, 2.80 and 3.23

(SD = 2.3, 1.5, 3.4), respectively. The median sample numbers are higher because of samples with

few detected transversions producing a comparatively high ratio. To compare fixed SNPs between

samples, we only consider sites covered ≥10x in both samples. The reported SNP % identity is

1 - (the number of fixed SNPs different between samples/number of sites covered ≥10x in both

samples). Multiallelic sites were called as sites with two alleles and ≥5 reads supporting each allele.

We report a normalized statistic (Fmulti) to compare multiallelic sites across samples with highly

variable coverage. At a given minor allele fraction(AF), Fmulti is the proportion of multiallelic sites

with a minor AF > x among those sites covered well enough to detect a minor AF of x. Effects

of multiallelic variants were predicted with SnpEff version 4.3[31] using the p-crAssphage genome

annotation available on GenBank and the flags “ann -noLog -noStats -no-downstream -noupstream

-no-utr -t”. When mothers had multiple samples, we used the one with the highest p-crAssphage

coverage for multiallelic site analysis.

3.5.4 CrAss-like phage correlation with bacterial abundance.

We used the outputs of Bracken to test for differential abundances in taxa between groups. Matrices

of reads classified to each taxon in each sample were filtered to keep only taxa with an abundance

of at least 0.001 and nonzero values in at least 30% of samples. Zeros in the data were replaced

with the Geometric Bayesian multiplicative method in the zCompositions version 1.3.2-1 package

for R[127]. Differential abundance between groups was calculated with the ALDEx2 version 1.16.0

package for R[49].

3.5.5 FMT data analysis.

Data from the FMT studies [162, 41] were processed, assembled and compared in the same way as

mother/infant data. Sample MGH06R35 was excluded from the FMT cohort analysis as it could

not be definitively determined whether sample designated as pre-FMT was actually collected prior

to transplantation (personal communication with authors).

3.6 Figures
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Figure 3.1: Mother-infant pairs share > 99.7% similar p-crAssphage genomes in 6/10
cases. Heatmap of pairwise alignment percentage identity of metagenome-assembled p-crAssphage
genomes from mothers and infants. Only families with p-crAssphage detected in at least one mother
and infant sample are shown. The p-crAssphage reference genome is also included as a comparison.
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Figure 3.2: P-crAssphage populations in mothers and infants differ in strain diversity.
a The p-crAssphage population in mothers has more multiallelic sites than the p-crAssphage pop-
ulation in infants. Fmulti (fraction of the p-crAssphage genome with multiallelic sites detected at
the given allelic fraction threshold) in all mother and infant samples with at least one multiallelic
site detected. P-values were calculated with the two-sided Wilcoxon rank-sum test and are uncor-
rected for multiple hypothesis testing. b P-crAssphage populations in mothers do not change in the
number of multiallelic sites over time. Fmulti for mother samples from Yassour et al.[195]. P-values
were calculated with a linear mixed model to account for repeated sampling of the same individual.
c Allelic fraction of multiallelic sites in the p-crAssphage genome from mothers that are fixed in
her infant. The distribution is separated by alleles that are present in the infant’s p-crAssphage or
not. P-values were calculated with the two-sided Wilcoxon rank-sum test. d Schematic depicting
multiallelic sites in mother and infant samples over time. In the three cases where p-crAssphage was
detected in the mother and multiple samples from the same infant, infants develop more multiallelic
sites over time.
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Figure 3.3: Predicted effects of multiallelic sites differ in the p-crAssphage population
of mothers and infants. a Distribution of multiallelic sites per kilobase in samples from mothers.
b Distribution of predicted effects of multiallelic sites from mother and infant samples, compared
to a background distribution of equal probability of each DNA change at each position in the p-
crAssphage reference genome.
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Figure 3.4: The frequency and predicted effects of multiallelic sites vary across the p-
crAssphage genome. a Fraction of samples from mothers covered at least 10x. All values are
calculated with a sliding window of size 1500bp with step size 200. b %GC content of the p-
crAssphage reference genome. c GC skew of the p-crAssphage reference genome. d Total count of
multiallelic sites (AF > 0.1) in the window. e Log base 2 ratio of nonsynonymous (N) to synonymous
(S) multiallelic sites (AF > 0.1). f Annotation and selected predicted functions of genes in the
reference genome.
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Figure 3.5: P-crAssphage status in patients receiving FMT over time. a P-crAssphage
detection at 1x coverage in samples from Smillie et al.[162] Both donors shown were p-crAssphage
positive. Open circles represent a p-crAssphage negative samples and closed circles represent p-
crAssphage positive samples. b P-crAssphage detection at 10x coverage in samples from Draper et
al.[41] Donor D1 was p-crAssphage positive, while donors D2 and D3 were p-crAssphage negative.
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3.7 Supplementary Figures

Figure 3.6: P-crAssphage presence at 1x coverage in infant and mother samples. P-
crAssphage presence at 1x coverage in infant (a) and mother (b) samples.
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Figure 3.7: P-crAssphage is more closely related in samples from mother-infant pairs
than in samples from unrelated individuals a. Distribution of pairwise alignment % identity
of metagenome-assembled p-crAssphage genomes. Groups are separated by family relationships.
P-values were calculated with the two-sided Wilcoxon rank sum test. b. Distribution of pairwise
SNP % identity of p-crAssphage genomes. Groups are separated by family relationships. P-values
were calculated with the two-sided Wilcoxon rank sum test. Boxes extend to the first and third
quartile, whiskers extend to the upper and lower value within 1.5*IQR from the box. Outliers are
shown as points.
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Figure 3.8: Metagenome-assembled p-crAssphage genomes are highly similar in samples
from matched mother-infant pairs. The heatmap shows pairwise alignment % identity in all
mother-infant samples with p-crAssphage detected. The p-crAssphage reference genome is also
included as a comparison.
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Figure 3.9: P-crAssphage is highly similar at the SNP level in samples from matched
mother-infant pairs. The heatmap shows pairwise SNP % identity in all samples with p-
crAssphage detected.
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Figure 3.10: CrAss-like phages detected at 1x covereage in mother and infant samples. a.
CrAss-like phages detected in samples from mothers in each study. b. CrAss-like phages detected in
samples from infants in each study. c. Number of crAss-like phage clusters detected in each sample
from mothers and infants.
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Figure 3.11: Collinsella and Collinsella aerofaciens are at higher relative abundances in
crAss-like phage positive vaginally delivered infants at 3-4 months of age, compared
to crAss-like phage negative infants. P-values calculated with the two-sided Wilcoxon rank
sum test and corrected for multiple hypothesis testing. Boxes extend to the first and third quartile,
whiskers extend to the upper and lower value within 1.5*IQR from the box. Outliers are shown as
points.
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Figure 3.12: Metagenome-assembled p-crAssphage genomes are highly similar in samples
from matched FMT donor-recipient pairs in Smillie et al. The heatmap shows pairwise align-
ment % identity in all samples that assembled >50kb p-crAssphage sequence. Assembled genomes
from donor samples are highlighted in red. The p-crAssphage reference genome is also included as
a comparison.
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Figure 3.13: Metagenome-assembled p-crAssphage genomes are highly similar in sam-
ples from matched FMT donor-recipient pairs in Draper et al. The heatmap shows pair-
wise alignment % identity in all samples that assembled >50kb p-crAssphage sequence. Assembled
genomes from donor samples are highlighted in red. The p-crAssphage reference genome is also
included as a comparison. The donor for patient P7 was p-crAssphage negative; this patient may
have acquired their p-crAssphage from the environment or another source.
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Figure 3.14: Lactococcus phages detected in mother and infant samples. Lactococcus
phages were the only other group of phages detected with at least 1x coverage in at least ten mother
and infant samples. This best represented member of this group, Lactococcus phage 16802, was
detected in 34 samples and has more multiallelic sites than p-crAssphage on average, with a median
of 58.8 multiallelic sites per kb.
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Figure 3.15: Additional cases of multiallelic sites in mothers and infants with one p-
crAssphage positive sample.



Chapter 4

Rare transmission of commensal

and pathogenic bacteria in the gut

microbiome of hospitalized adults

The work in this chapter was presented in:

Siranosian, B.A., Brooks, E.F., Andermann, T., Rezvani, A.R., Banaei, N., Tang, H., and Bhatt,

A.S. (2021). Rare transmission of commensal and pathogenic bacteria in the gut microbiome of

hospitalized adults.

4.1 Abstract

Bacterial bloodstream infections are a major cause of morbidity and mortality among patients

undergoing hematopoietic cell transplantation (HCT). Although previous research has demonstrated

that pathogenic organisms may translocate from the gut microbiome into the bloodstream to cause

infections, the mechanisms by which HCT patients acquire pathogens in their microbiome have

not yet been described. We hypothesized that patient-patient transmission may be responsible for

pathogens colonizing the microbiome of HCT patients, and that patients who share time and space

in the hospital are more likely to share bacterial strains.

Here, we used linked-read and short-read metagenomic sequencing to analyze 401 stool samples

collected from 149 adults undergoing HCT and hospitalized in the same unit over five years. We

used metagenomic assembly and strain-specific comparison methods to investigate transmission of

gut microbiota between individuals. While patients who shared time and space in the hospital did

not converge in overall microbiome composition, we did observe four pairs of patients who harbor

identical or nearly identical E. faecium strains in their microbiome. These strains may be the result

56



4.2. INTRODUCTION 57

of transmission between patients who shared a room and bathroom, acquisition from a common

source in the hospital or transmission from an unsampled source.

We also observed identical Akkermansia muciniphila and Hungatella hathewayi strains in two

pairs of patients. In both cases, the patients were roommates for at least one day, the strain was ab-

sent in the putative recipient’s microbiome prior to the period of roommate overlap and the putative

recipient had a microbiome perturbed by antibiotic treatment for a bloodstream infection. Finally,

we identified multiple patients who harbored identical strains of several species commonly found in

commercial probiotics and dairy products, including Lactobacillus rhamnosus, Lactobacillus gasseri

and Streptococcus thermophilus. Overall, our findings indicate that pathogenic organisms from a

single source are not frequently colonizing the gut microbiome of multiple patients. However, the

potential transmission of commensal microbes with immunomodulatory properties raises questions

about the recovery of microbiome diversity after HCT, and indicates that patients in this setting

may acquire new microbes by sharing space with others.

4.2 Introduction

Patients undergoing hematopoietic cell transplantation (HCT), a potentially curative treatment for

a range of hematologic malignancies and disorders, are at increased risk for bloodstream infections

(BSIs) and associated morbidity and mortality[198]. While the bacterial pathogens that cause BSIs

in HCT patients are well understood, their routes of transmission are often unclear. Determining

these transmission pathways involves identifying two critical elements: the source of the infection,

i.e., how the pathogen was introduced into the patient’s bloodstream, and the origins of the particular

pathogen causing the BSI.

The most common ways bacterial pathogens can be introduced into an HCT patient’s blood-

stream include contaminated central intravenous lines and translocation of intestinal microbiota

across a damaged epithelium[146]. Indeed, research from our group and others has shown that

strains of bacteria isolated from the blood of HCT patients with BSIs may be indistinguishable from

the strains in the intestinal microbiota of these patients prior to infection[76, 168, 200]. In addition,

HCT patients with a microbiome dominated by a single bacterial taxon, such as Enterococcus or

Streptococcus, are at increased risk for not only BSI[170, 181], but also graft-versus-host disease[69,

105] and death[132, 155, 171, 185].

Identifying the source of the BSI is only the first step. To fully understand the transmission

pathways of bacterial pathogens in hospital settings, it is also essential to determine the origin of

the pathogen that caused the BSI. For gut-based pathogens, there are three possibilities. First,

they may exist in the HCT patient’s microbiome upon admission to the hospital. Second, hospital

environments and equipment may serve as unintentional reservoirs of pathogens, thereby infecting

multiple patients through exposure[84]. Lastly, a pathogen could originate from the microbiome
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of other patients, healthcare workers or hospital visitors and be transmitted via shared spaces. In

cases where traditional epidemiological links cannot be found, this patient-patient transmission of

gut microbes may be the “missing link” that explains the persistence of BSIs in hospital environ-

ments[137].

Transmission of gut bacteria and phages between individuals is known to occur in specific cases,

such as from mothers to developing infants[13, 159, 195]. By contrast, adults have a microbiome that

is relatively resistant to colonization with new organisms even after perturbation by antibiotics[99,

167, 204]. While adults living in the same household or in close-knit communities may have more

similar microbes than those outside the group[21], to our knowledge, direct transmission of gut mi-

crobes between adults has not been observed with high-resolution metagenomic methods, with the

notable exception of fecal microbiota transplantation[162, 184, 90], a drastic reshaping of the gut

microbiota often used in response to Clostridiodes difficile infection. Transmission of gut microbiota

is thought to occur by a fecal-oral route, which could happen in the hospital environment by expo-

sure to contaminated surfaces or equipment, sharing a room or bathroom, contaminated hands of

healthcare workers or other sources. The perturbed microbiomes of HCT patients, often lacking key

species to provide colonization resistance, may be primed to acquire new species from these sources.

Previous studies of the microbiome in HCT patients have often used 16S rRNA sequencing[132,

7, 136, 156], which is sufficient for taxonomic classification but cannot differentiate specific strains

in a mixed community. By contrast, short-read shotgun metagenomic sequencing can capture infor-

mation from all bacterial, archaeal, eukaryotic and phage DNA in a stool sample. While short-read

sequencing data is accurate on a per-base level, it is often insufficient to assemble complete bacterial

genomes due to the presence of repetitive genetic elements. Linked-read sequencing captures ad-

ditional long-range information by introducing molecular barcodes in the library preparation step.

This technology allows for significant increases in assembly contiguity[19, 74] while retaining high

per-base accuracy. Both of these technologies also capture information about strain diversity, genetic

variation within the population of a species[178, 182], which is critical for measuring transmission

between microbiomes.

Here, we use a collection of short-read and linked-read metagenomic sequencing datasets from

401 stool samples to analyze bacterial transmission between HCT patient microbiomes at a single,

high-volume hospital. We apply strain-resolved comparison methods to show that transmission

of bacteria between adults hospitalized in the same unit at the same time is likely a rare event,

usually occurring when recipients have extremely perturbed microbiomes, such as after exposure to

broad-spectrum antibiotics. Bacterial strains shared between individuals include both pathogenic

and commensal organisms, demonstrating that transmission may depend more on niche availability

than pathogenicity or antibiotic resistance capacity. We find that pathogens colonizing HCT patient

microbiomes are present in the first sample in a time course roughly 60-70% of the time in our cohort.

This suggests that in most cases, prior colonization, rather than direct transmission from other
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patients or the hospital environment, is responsible for pathogenic organisms in the gut microbiomes

of this patient population. Even though patients were frequently placed into double occupancy

hospital rooms with a shared bathroom, we observe relatively few putative transmission events.

This implies that sharing a room with another patient may not place a patient recovering from HCT

at a greatly increased risk of acquiring pathogens in their gut microbiome.

4.3 Results

4.3.1 Sample characteristics and patient geography

We collected weekly stool samples (see methods) from adult patients undergoing hematopoietic

cell transplantation (HCT) at Stanford University Medical Center from 2015-2019. At the time

of the study, our biobank contained over 2000 stool samples from over 900 patients. Samples from

October 2015 to November 2018 were considered for this study. Relevant patient health, medication,

demographic, hospital admission and room occupancy data were extracted from electronic health

records (Table 1, Table S1). All patients stayed in a single ward of the hospital during treatment,

which contained 14 single-occupancy and four double-occupancy rooms, the latter of which included

shared bathrooms (Figure S1a). Patients spent a median of 18 days on the ward and were frequently

moved between rooms: 42% of patients spent at least one day in three or more rooms during the

course of treatment (Table 2, Figure S1c). 73% of patients shared a room with a roommate for ≥24

hours. Over the course of their hospital stays, many patients had several roommates, though never

more than one at a time (Figure S1d). Patients with multi-resistant Gram-negative infections were

always placed into single rooms with contact precautions.

To understand how geographic overlap may influence transmission of gut microbes, we created

a network from patient-roommate interactions (Figure S1b). 535 patients (77% of patients with

at least one roommate, 56% of all patients) fell into the largest connected component of the net-

work. Although the largest component was not densely connected (mean degree 2.2 ± 1.6 standard

deviation (SD)), it links together patients over three years and may represent a risk for infection

transmission. We used the network to select samples for further analysis with metagenomic sequenc-

ing, as described in the methods.

4.3.2 Metagenomic sequencing, assembly and binning

For an overview of the steps used in the generation and processing of sequence data, see Figure 1a.

328 stool samples from 94 HCT patients were subject to short-read metagenomic sequencing as part

of previous projects (for references and SRA IDs of these samples, see Table S2). 96 additional sam-

ples from 62 patients were selected for linked-read sequencing to span periods of roommate overlap

between patients. Samples were subjected to bead beating-based DNA extraction and bead-based
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DNA size selection for fragments ≥2 kb (see methods). We prepared linked-read sequencing libraries

with the 10X Genomics Chromium platform from 89 samples with sufficient DNA concentration.

Samples were sequenced to a median of 116 million (M) (± 37 M SD) read pairs on an Illumina

HiSeq4000. In total, 401 stool samples from 149 patients were sequenced (Table 3), with a median

of 2 and maximum of 13 samples per patient (Figure 1b).

We processed all existing short-read data and newly generated linked-read data by first trimming

and then removing low quality reads, PCR duplicates (short-read data only) and reads that aligned

against the human genome (see methods). After quality control, newly sequenced linked-read sam-

ples had a median 104 M (± 40 M SD) read pairs, while short-read data had a median 7.6 M (±
4.4 M SD) read pairs. Metagenomic assembly was conducted using metaSPAdes[118] for short-read

data, and MEGAHIT[86] followed by Athena[19] for linked-read data. Short-read assemblies had

a median N50 of 17.2 kb ± 24.8 kb, while linked-read assemblies had a median N50 of 147.6 ±
165.8 kb. We binned metagenome-assembled genomes (MAGs) using Metabat2[72], Maxbin[192]

and CONCOCT[6] and aggregated across results from each tool using DASTool[157]. MAG com-

pleteness and contamination was evaluated using CheckM[129] and MAG quality was determined by

previously established standards[20]. The vast majority of short-read and linked-read MAGs were

at least medium quality, and 27% of linked-read MAGs contained the 5S, 16S and 23S rRNA genes

and at least 18 tRNAs to be considered high-quality (Figure 1c, Table S3). Linked-read MAGs had

higher quality than the 4,644 species-level genomes in the Unified Human Gastrointestinal Genome

collection[5], where 573 genomes (12.3%) are high-quality, and only 38 (6.6%) of those came from

metagenomes rather than isolates. Sequencing dataset type (short-read vs linked-read) did not have

a linear relationship with MAG length (linear regression, p > 0.9); the increase in quality was mainly

due to the inclusion of ribosomal and transfer RNA genes in the linked-read MAGs, which often

do not assemble well with short-read sequencing data alone. To understand the diversity of strains

present in the microbiomes of our patients, we clustered all medium- and high-quality MAGs at 95%

and 99% identity thresholds (roughly “species” and “strain” level, see methods) using dRep[121],

yielding 1615 unique genomes representative of the microbial diversity in this sample set.

4.3.3 Classification of abundant Healthcare-associated Infection organ-

isms

We performed taxonomic classification of sequencing reads with Kraken2[189] and abundance esti-

mation with Bracken[100] using a custom database of bacterial, fungal, archaeal and viral genomes

in NCBI Genbank (see methods) (Table S4, S5). A median of 33% ± 15% SD reads were classified

to the species level with Kraken2 (72% ± 15% SD at the genus level), which was improved to 96% ±
7% SD using Bracken (97% ±8% SD at the genus level). Organisms that cause healthcare-associated

Infections (HAI) were identified from the CDC list of pathogens[38]. Here, we report organisms as

present if they achieve 1% relative abundance, but acknowledge that many microbes typically exist
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at lower concentrations, which may be undetectable with metagenomic sequencing.

Many HAI organisms were prevalent in the microbiomes of the studied HCT patients. 152 samples

(38%) from 79 patients (53%) had at least one HAI organism identified at 1% relative abundance

or above (Figure 1e). Escherichia coli was the most common HAI organism (present at ≥1% in

42/149 patients, 28.2%; 0.1%=80/149, 53.7%), followed by Klebsiella pneumoniae (39/149 patients,

26.2%; 0.1%=70/149, 47%) and Enterococcus faecium (26/149 patients, 17.4%; 0.1%=73/149, 49%).

Rates of colonization with HAI organisms were much higher than in stool samples from healthy

individuals in the Human Microbiome Project[97] where E. coli reaches 1% relative abundance in

2.1% of samples, and K. pneumoniae and E. faecium are never found at greater than 1% (present

at 0.1% in 18.4%, 1.4% and 0.7% of samples, respectively).

HCT patient microbiomes can become dominated by HAI organisms, often as a result of antibiotic

usage. 24 patients (16%) have at least one sample with a dominant HAI organism (≥ 30% relative

abundance), which may place them at increased risk for bloodstream infections (BSI)6. BSI in this

cohort of HCT patients is most frequently caused by E. coli, viridans group Streptococci and E.

faecium; these organisms less frequently cause BSI among the entire inpatient population at our

hospital (Figure 1f). We focused further analysis on E. coli and E. faecium, as these species are

both frequently detected in stool and frequently cause BSIs. While viridans group Streptococci

frequently cause BSIs in HCT patients, these species are typically much more prevalent in the oral

cavity[146, 1] compared to the gut microbiome (individual species in the group only reach 1% relative

abundance in 8/149 patients, 5%).

4.3.4 Detection of E. coli and E. faecium becomes more common during

a patient’s hospital stay

We investigated the detection of E. coli and E. faecium in patients with time course samples (82/149

patients, 55%) as a proxy for understanding if these organisms were acquired or became more

abundant during the observed hospital stay. Of the 1615 de-replicated MAGs, nine were identified

as E. coli and five were identified as E. faecium. We mapped sequencing reads from all samples to

these MAGs and evaluated the maximum coverage breadth, the fraction of the reference genome

covered with at least one sequencing read. We used a breadth cutoff of 50% to determine “detection”

or “absence” in a sample. This threshold is likely specific (it is difficult to achieve 50% breadth by

read mis-mapping or homology with a different organism) but not extremely sensitive (it will likely

miss very lowly abundant organisms that are truly present).

64/82 (78%) patients with time course samples have E. coli present at 50% breadth in at least

one sample. Of these, 10/64 (16%) have E. coli below 50% breadth in the first sample. 60/82 (73%)

patients with time course samples have E. faecium present at 50% breadth in at least one sample.

Of these, 17/60 (28%) have E. faecium below 50% breadth in the first sample (Figure 1d). In

these patients, E. coli or E. faecium may have been newly acquired into the gut microbiome during
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the hospital stay. Alternatively, the organism could have also been present at low abundance and

below our limit of detection in the first sample. It is possible that antibiotic use in the weeks after

HCT kills off many of natural microbiome colonizers, allowing antibiotic resistant HAI organisms to

increase in relative abundance past our limit of detection. Overall, the relative abundance of E. coli

and E. faecium was not significantly different in first samples compared to later samples (Wilcoxon

rank-sum test). While more patients have newly detectable E. faecium than E. coli, the difference

was not statistically significant (p=0.09, binomial likelihood ratio test).

4.3.5 Antibiotic use and its effect on HCT patient microbiomes

HCT patients are frequently prescribed antibiotic, antiviral and antifungal drugs, especially in the

days immediately after transplant. These drugs can have a significant impact on the microbial

populations in the gut and contribute to the loss of microbial diversity frequently observed fol-

lowing HCT6. Antibiotic use likely impacts the dynamics of bacterial transmission in this patient

population, as both natural colonizers, which may provide resistance to newly invading species, and

potentially transmitted species can be killed by the drugs. We gathered electronic health record data

to understand the characteristics of antibiotic prescription in our patient cohort and its potential

impact on the gut microbiome composition.

Patients were prescribed a median of five different antibiotics (range 1 - 10) and had a median

of 90 cumulative antibiotic-days (range 14 - 416). The most common antibiotics prescribed were

ciprofloxacin (98% of patients prescribed for at least one day), IV vancomycin (80%), cefepime (66%)

and piperacillin-tazobactam (57%). Prescription of most antibiotics peaked in the 14 days following

HCT, while administration of antifungal drugs like posaconazole and antiviral drugs like ganciclovir

were higher up to 50 days following HCT (Figure 2a). We found that antibiotic usage in the prior

seven days before a stool sample was collected was strongly negatively associated with bacterial

diversity (linear regression on cumulative antibiotic-days and Shannon diversity, R2 =0.18, 0.14,

p=8.9e-11, 2.6e-8 for species and genus level, respectively). Samples with a single species dominant

at 30% relative abundance or higher also typically had higher antibiotic usage in the past seven days

(p=0.001, Wilcoxon rank-sum Test) (Figure 2b-d).

4.3.6 Patients who share time and space in the hospital do not converge

in microbiome composition or frequently share strains

To understand the overall impact of temporal and spatial overlap on patient microbiomes, we first

studied the taxonomic (Bray-Curtis) similarity between samples from different patients. For each

sample pair, we calculated the maximum time the two patients had overlapped in the hospital or as

roommates, determined by the earlier sample time. There was not a significant linear association be-

tween time of overlap and taxonomic similarity (linear regression, p=0.42 for roommate, p=0.068 for
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hospital, Figure 2e,f), indicating that the broad taxonomic composition of patient microbiomes may

not converge under temporal and geographic overlap. However, there may be isolated strains that

are shared between patients. We used the strain diversity-aware, SNP-based method inStrain[122]

to conduct a sensitive analysis of bacterial strains shared between patients. InStrain compares align-

ments of short reads from multiple samples to the same reference genome and reports two metrics:

Consensus ANI (conANI) and PopulationANI (popANI). ConANI counts a SNP when two samples

differ in the consensus allele at a position in the reference genome, similar to many conventional SNP

calling methods. PopANI counts a SNP only if both samples share no alleles. For example, if A/T

alleles were found at frequencies of 90/10% and 10/90% in two samples, a consensus SNP would be

called because the consensus base is different. A population SNP would not be called because both

samples share an A and T allele.

We mapped sequencing reads from all samples against the collection of 1615 unique MAGs and

compared strains in samples from different patients with >50% coverage breadth at a depth of five

reads (see methods). This coverage breadth threshold ensures ANI is calculated across the majority

of the strains being compared and is recommended by the authors of inStrain. The maximum

log-scaled popANI value was taken as representative of the maximal strain sharing between all

pairs of patients. Length of hospital overlap was significantly associated with having a more similar

microbiome strain (linear regression on log-scaled popANI values, p=0.0017), while time of roommate

overlap was not significantly related (Figure 2i,j). However, we note that this comparison excludes

pairs of patients with strains below 97% ANI or with very lowly abundant strains, as they would

not be detected by inStrain. Taken together, these results suggest that the microbiomes of patients

who share time and space in the hospital are not converging, either at the broad taxonomic level,

or frequently at the specific strain level. We followed up on the few cases of high-identity strains as

evidence for possible transmission events.

4.3.7 HAI organisms that colonize HCT patient microbiomes are part of

known, antibiotic resistant and globally disseminated clades

E. coli and E. faecium are common commensal colonizers of human microbiomes[42, 128, 175].

These species can also be pathogenic and contribute to inflammation, dysbiosis and infection in the

host[78, 149]. The specific strain of these species is key in determining the balance between a healthy

and diseased state in the microbiome. We compared patient-derived E. coli and E. faecium MAGs

with several reference genomes (Table S6) to identify the closest strains or sequence types.

Escherichia coli

The 95% identity, or species-level, cluster of E. coli MAGs contained 47 genomes from 26 patients

(Figure 3). Within this alignment average nucleotide identity (ANI) based tree, we observed two
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clades of genomes where MAGs from multiple patients had >99.9% ANI. These clades were inves-

tigated further as they may represent common sequence types. The first clade contained 15 MAGs

from 7 patients; these MAGs had >99.9% ANI to pathogenic E. coli sequence type (ST) 131 clade

C2 genomes, including EC95854 and JJ188655. ST131 is an extraintestinal, pathogenic, multidrug

resistant E. coli strain which frequently causes urinary tract infections[61]. E. coli ST131 often car-

ries extended-spectrum -lactamase (ESBL) genes which convey a wide range of antibiotic resistance.

This sequence type is believed to colonize the intestinal tract even in healthy individuals without

antibiotic exposure[186], and there are reports of this pathogen causing urinary tract infections in

multiple individuals within a household[101].

The second clade contained 12 MAGs from 5 patients with >99.8% ANI to the pathogenic

ST648 representative IMT16316[143]. ST648 is also an ESBL-producing E. coli strain, but it is not

as widespread as ST131. Both STs have been isolated from wastewater[131] and ST648 has been

isolated from the gut of humans[112] and other mammals[48]. Our finding that E. coli ST648 is also

prevalent in HCT patient microbiomes suggests that it may become a pathogen of interest in this

patient population in the future.

To understand the antibiotic resistance capabilities of the E. coli strains colonizing these HCT

patients, we searched for β-lactamase genes in the E. coli MAGs (see methods). The most com-

monly detected genes were ampH and ampC, which are part of the core E. coli genome and likely

do not contribute to antibiotic resistance[65] (Figure S2A). CMY-132 was detected exclusively in

MAGs in the ST131 clade, and mutations conveying resistance in gyrA were detected in MAGs in

multiple clades. CTX-M-type β-lactamases were detected in several samples, but often within the

metagenome rather than within the E. coli MAG, indicating they may be on plasmids or mobile

genetic elements that did not bin with the rest of the E. coli genomes.

Enterococcus faecium

The species-level cluster of E. faecium MAGs contained 30 genomes from 20 patients (Figure 4a).

All MAGs were ≥99% identical, suggesting a single ST is present in most patients50. These genomes

matched closest to E. faecium ST117, a well-described vancomycin-resistant strain that frequently

causes bloodstream infections[174]. Notably, five other MAGs had 94% ANI (below the 95% cluster-

ing threshold, and therefore not shown in Figure 3a) to the ST117 clade and >99% ANI to commensal

E. faecium strains, including strains Com15 and Com1250. To understand the vancomycin resis-

tance capabilities of these strains, we searched for the seven genes in the vanA operon[3]. Only 2/30

samples had the full operon present within the E. faecium MAG (Figure S2b). When we looked in

the entire metagenome, 22/30 samples had the full operon present, and the vanA genes were usually

detected on a contig that was not assigned to any MAG. Van genes are often carried on mobile

genetic elements or plasmids in E. faecium, which frequently do not assemble and bin well due to

repetitive sequences.
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Interestingly, no van genes are present in sample 11342 02, but the full operon is present in the E.

faecium MAG in sample 11342 03, collected 14 days later from the same patient. In sample 11342 03,

the vanA operon appears on a contig 8.7 kb long with 143x coverage, much lower than the 2000x

coverage of the rest of the E. faecium MAG. Mapping reads against this contig revealed scattered

coverage in 11342 02, leading us to believe the operon is present, but not at high enough coverage

to be assembled in the earlier sample. We attempted to culture vancomycin-resistant Enterococcus

(VRE) from these samples (see methods), and positively identified E. faecium by MALDI coupled

to time-of-flight mass spectrometry in samples 11342 02 and 11342 03. Taken together, these results

suggest that there were at least two strains of E. faecium in the gut microbiota of patient 11342.

The low relative coverage of the vanA operon indicates that the VRE strain may have been a small

fraction of the total E. faecium population. Patient 11342 was never prescribed vancomycin (Figure

S7a), so the VRE strain may have not had an advantage in this environment.

VanA genes were also not detected in sample 11349 01, where we observed a nearly identical E.

faecium strain to patient 11342 after the patients shared a room for 11 days. When we attempted

to culture VRE from 11349 01, a bacterium grew poorly on plates containing vancomycin and was

identified as Klebsiella pneumoniae. Therefore, we believe the E. faecium strain in the microbiome

of this patient was vancomycin sensitive. If transmission from patient 11342 was responsible for

colonization of patient 11349, the vancomycin-sensitive strain may have been transmitted.

4.3.8 Nearly identical strains indicative of putative patient-patient En-

terococcus faecium, but not Escherichia coli transmission

We used the results from the inStrain comparison to search for nearly identical bacterial strains,

which may be indicative of transmission between patients. To determine a threshold for putative

transmission, we examined comparisons in several “positive control” datasets where we expect to

find identical strains, either as the result of persistence or transmission: time course samples from

the same HCT patient, stool samples from mother-infant pairs[195] and samples from fecal micro-

biota transplantation donors and recipients[162]. We often observed 100% popANI in these “positive

control” comparisons, indicating that there were no SNPs that could differentiate the strain popu-

lations in the two samples (Figure S3, S4). Due to expected noise and errors in sequencing data,

we set the lower bound for transmission in our HCT cohort at 99.999% popANI, equivalent to 30

population SNPs in a 3 megabase (Mb) genome. The same threshold was used to identify identical

strains by the authors of inStrain[122].

Escherichia coli

While E. coli genomes in samples collected from the same patient over time were always more

similar than the putative transmission threshold, in no case did we observe a pair of samples from

different patients with ≥99.999% popANI (Table S8). This result suggests that all E. coli strains
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observed are patient-specific, and argues that there are not common strains circulating in the hospital

environment or passing between patients. Alternatively, patient-patient transmission or acquisition

of common environmental strains is either notably rare or rapid genetic drift after a patient acquires

a new strain is reducing popANI levels below the threshold. Deeper metagenomic sequencing or

isolation and sequencing of E. coli strains may allow us to detect transmission in previously missed

cases.

Enterococcus faecium

We performed the same analysis in E. faecium and observed four examples where two patients shared

a strain with ≥99.999% popANI (Figure 4b,c). In one case, the two patients were roommates and

direct transmission appears to be the most likely route. In the other three cases, epidemiological

links were less clear, suggesting the patients may have acquired a similar strain from the hospital

environment or through unsampled intermediates. In the following descriptions, samples are referred

to by the day of collection, relative to the first sample from patients in the comparison.

Case 1: Patients 11342 and 11349 overlapped in the ward for 21 days and were roommates

for 11 days (Figure 5a). Patient 11342 had a gut microbiome that was dominated by E. faecium;

the two samples from this patient have 60% and 87% E. faecium relative abundance. A single

sample from patient 11349 was obtained 14 days after starting to share a room with patient 11342.

This sample is dominated by Klebsiella pneumoniae, and E. faecium is at 0.4% relative abundance.

InStrain comparisons between the E. faecium strains in 11342 (the presumed “donor”) and 11349

(the presumed “recipient”) of the strain revealed 0-2 population SNPs (popANI 100% - 99.9999%)

with 87% of the reference MAG (2.24 Mb) covered ≥5x in both samples. MAGs from each patient

were also structurally concordant (representative dotplots in Figure S6a). These genomes were the

most similar out of all E. faecium genomes compared from different patients. Samples from these

patients were extracted in different batches and sequenced on different lanes, minimizing the chance

that sample contamination or “barcode swapping”[115] (see Supplemental Note) could be responsible

for this result. No other strains were shared between these two patients.

Case 2: Patients 11575 and 11568 overlapped on the ward for 36 days but were never roommates

(Figure 5b). Samples from patient 11575 span 97 days, during which this patient experienced

a BSI with Klebsiella pneumoniae and treatment with intravenous (IV) vancomycin, ciprofloxacin,

meropenem (Figure S7c). Antibiotic treatment likely resulted in a reduction in microbiome diversity

and domination by E. faecium in samples collected on days 16 and 28. Two samples were collected

from patient 11568 on days 28 and 119. The first sample from 11568 was also dominated by E.

faecium, but strains from the two patients were distinct (99.95% popANI). 91 days later, the second

sample from 11568 has a lower relative abundance of E. faecium but a nearly identical strain to

patient 11575. Five population SNPs (99.9997% popANI) were detected with 88% of the reference

MAG covered ≥5x in both samples (representative dotplot in Figure S6b). This suggests that the E.
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faecium strain in 11568 was replaced by a different strain with high identity to the strain in 11575.

Patient 11568 was discharged from the HCT ward during the period between the two samples. The

shared strain may represent an acquisition from a common environmental source or transmission

from unobserved patients, rather than a direct transmission event between these two patients. While

the E. faecium strain was different at the two time points from patient 11568, an E. faecalis strain

remained identical.

Case 3: Patients 11605 and 11673 did not overlap in the ward (Figure 5c). Two samples were

collected from 11605 on days 0 and 14. This patient experienced a BSI with E. faecium and treatment

with meropenem (Figure S7e) prior to a sample dominated by the same species on day 14. Patient

11673 experienced a BSI with E. coli and treatment with vancomycin, meropenem and cefepime

(Figure S7f) prior to the single sample we collected from this patient. Comparing E. faecium strains

between the two patients revealed 2 population SNPs (99.9998% popANI) with 48% of the reference

MAG covered ≥5x in both samples (representative dotplot in Figure S6c). Although slightly below

the 50% coverage threshold, the high degree of similarity caused us to consider this result. While E.

faecium strains in the two patients were nearly identical, the samples were collected 161 days apart

and the patients had no overlap in the ward. This suggests both patients may have acquired the

strain from the hospital environment, through transmission from unsampled patients, or another

source such as healthcare workers.

Case 4: Patients 11360 and 11789 did not overlap in the ward. E. faecium remained at rela-

tively low abundance in all samples. Comparing E. faecium strains between patients revealed 5-10

population SNPs (99.9993% - 99.9996% popANI) with 50%-57% genome coverage. Neither patient

had a BSI during the sampling period. As these samples were collected at least 428 days apart, a

shared source again may be the most likely explanation.

Comparisons with E. faecium and E. coli in published data

The E. faecium and E. coli strains we observe in our patients may be unique to this patient popula-

tion and hospital environment. Alternatively, they may be hospital acquired strains that are present

in other settings around the globe. We searched through several published datasets to differentiate

between these possibilities. Our comparison dataset included metagenomic shotgun sequence data

from 189 stool samples from adult HCT patients[144], 113 stool samples from pediatric HCT pa-

tients[76, 32, 158], 732 stool samples from hospitalized infants[123] and 58 vancomycin-resistant E.

faecium isolates[67]. Sequence data were downloaded from SRA and processed in the same manner

as other short-read data. Each sample was aligned against the E. faecium and E. coli MAGs used

in the inStrain analysis above, profiled for SNPs, and compared against samples collected from our

HCT patients. Comparisons within our data and comparisons within individual external datasets

frequently achieved popANI values of ≥99.999%, typically from comparisons of samples from the

same patient over time. Meanwhile, comparisons between our samples and external samples had
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lower popANI values (Figure S5).

Comparisons of E. faecium strains in samples from patient 11346 in our dataset and patient

688 in the HCT microbiome dataset collected at Memorial Sloan Kettering Cancer Center[144]

demonstrated a maximum of 99.9993% popANI (16 population SNPs detected in 2.3 Mb compared).

While direct transmission is likely not involved here, this observation does align with the nearly

identical E. faecium strains we observed in patients with no geographic or temporal overlap (case 3

and 4) and speaks to the global dissemination of vancomycin-resistant E. faecium ST 117. Comparing

E. coli to external datasets revealed a maximum of 99.996% popANI (200 population SNPs detected

in 5.0 Mb compared).

4.3.9 Putative transmission of commensal bacteria

Next, we extended the inStrain analysis to compare all species that were present in multiple patients.

We found nearly identical genomes of commensal organisms that may be the result of transmission

between patients, as well as several species shared between patients without clear explanations.

Hungatella hathewayi

Patients 11639 and 11662 overlapped in the ward for 34 days and were roommates for a single

day, after which 11639 was discharged (Figure 6a). Hungatella hathewayi was at 5-10% relative

abundance in the two samples from 11639. Patient 11662 developed Streptococcus mitis BSI on

day 10 and was treated with IV vancomycin and cefepime (Figure S8b). The microbiome of this

patient recovered with markedly different composition, including an abundant H. hathewayi strain

reaching 54% and 17% relative abundance on days 58 and 100, respectively. Comparing H. hathewayi

genomes between these two patients revealed 0-1 population SNPs (100% - 99.99998% popANI) with

94%-98% coverage ≥5x (6.9 - 7.1 Mb sequence covered in both samples). This was the single highest

ANI comparison among all strains shared between patients. H. hathewayi MAGs from these patients

were also structurally concordant and had few structural variations (Figure S6d). No other strains

were shared between these patients.

Patient 11662 had H. hathewayi in the first two samples at 1.2% and 0.3% relative abundance,

respectively. Although we were limited by coverage, comparing early to late samples with inStrain

revealed 472 population SNPs in 3% of the genome that was covered at least 5X, implying 11662

was initially colonized by a different H. hathewayi strain, which was eliminated and subsequently

replaced by the strain present in 11639. Given that samples were collected weekly, determining the

direction of transmission is challenging. However, 11639 to 11662 appears to be the most likely

direction, given the sampling times and perturbation 11662 experienced. However, it is possible

that transmission occurred in the opposite direction or from a common source. Interestingly, 11662

was also re-colonized with Flavonifractor plautii in later samples. This strain was different from the
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strain in earlier samples from this patient, as well as all other Flavonifractor strains in our sample

collection.

H. hathewayi is known to form spores and is able to persist outside a host for days[24]. Although

these patients were only roommates for a single day, 11662 remained in the same room for 4 days

after 11639 was discharged, increasing the chance that a H. hathewayi spore could be transmitted

from a surface in the shared room or bathroom. The question remains as to why transmission of H.

hathewayi is not more common, given it is found at ≥1% relative abundance in 31 patients. Perhaps

the earlier colonization of the microbiome of 11662 with a different H. hathewayi strain was key -

the microbiome in this patient was “primed” to receive a new strain of the same species, despite the

significant perturbation this patient experienced.

Notably, H. hathewayi was recently reclassified from Clostridium hathewayi [75], and was previ-

ously shown to induce regulatory T-cells and suppress inflammation[11]. Although the interaction

of this microbe in HCT is not known, it may be interesting to investigate further given that the

microbe may be transmitted between individuals and may contribute to inflammation suppression

that may be relevant in diseases such as graft-vs-host disease. However, H. hathewayi may not be

entirely beneficial or harmless and has been reported to cause BSI and sepsis in rare cases[95, 188].

Akkermansia muciniphila

Patients 11742 and 11647 overlapped in the ward for 11 days and were roommates for nine days

(Figure 6b). Patient 11647 experienced a BSI with Klebsiella pneumoniae (perhaps related to pre-

vious K. pneumoniae domination of the microbiome) and was treated with piperacillin-tazobactam

and cefepime (Figure S8d). The final sample from 11647 has Akkermansia muciniphila at 9.4%

relative abundance, while the single sample from 11742 was dominated by A. muciniphila (85%

relative abundance). Comparing these genomes revealed 0 population SNPs and 7 consensus SNPs

with 90% coverage, as well as concordant MAGs from each sample (Figure S6e). No other strains

were shared between these two patients.

In contrast to H. hathewayi, A. muciniphila is not known to form spores, which may reduce

the chance of this microbe being transmitted. However, it is an aerotolerant anaerobe that may

survive in oxygen for short periods of time[139]. The microbiome domination of 11742 with A.

muciniphila and the relatively long overlap period of nine days in the same room may provide a

greater “infectious dose” (abundance * exposure time) to the recipient patient.

4.3.10 Widespread strain sharing of commercially available probiotic or-

ganisms

Several organisms were found with identical or nearly identical genomes across multiple patient

microbiomes without clear epidemiological links. The largest clade was found for Lactobacillus

rhamnosus, which included 11 samples collected from eight patients over a span of 2.5 years (Figure
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7a,d). All 11 samples in this clade had pairwise popANI of ≥99.999%, and in a subset of eight

samples from seven patients, all pairs were identical from a popANI perspective (100%). Of the

eight patients in this clade, only two pairs were roommates or overlapped in the hospital (patients

11537/11547 and 11647/11662, roommates for three days and one day, hospital overlap for 20 and

44 days, respectively). All 11 samples in this clade were collected after HCT (median time from

HCT to first sample 43 days, range 12-93 days), and L. rhamnosus always had <0.1% relative

abundance in pre-HCT samples, when present. Five of eight patients were discharged from the

hospital after HCT and prior to acquiring L. rhamnosus, which we observed in a sample collected

during a subsequent admission. We also observe L. rhamnosus falling below 0.1% relative abundance

in a subsequent sample in five patients, suggesting that this strain may be a transient colonizer of

the microbiome (Figure 7E). We evaluated antibiotic prescriptions in these patients and found that

acquisition and loss of L. rhamnosus typically occurs independently of antibiotic use. For example,

in patient 11537, L. rhamnosus is first detected and expands to 23.4% relative abundance while the

patient is prescribed ciprofloxacin and cefepime. L. rhamnosus declines in relative abundance after

the antibiotic prescription ends (Figure S9). Similar clades of high-identity genomes from different

patients were found for Lactobacillus gasseri (Figure 7b) and Streptococcus thermophilus (Figure

7c).

Given that we did not observe hospital or roommate overlap between most patients in the L.

rhamnosus cluster, the most likely explanation is that patients acquired this strain from a common

source. L. rhamnosus is a component of several commercially available probiotic supplements,

is present in certain live active-culture foods such as yogurt, and is among the most commonly

prescribed probiotic species in US hospitals[197]. However, HCT recipients were not allowed to take

probiotics or consume high-bacteria dairy products, such as probiotic yogurt or soft cheese, while

inpatients on the HCT ward. We also verified that no prescriptions were written for probiotics

by examining electronic health records. A majority of patients were discharged from the hospital

between HCT and acquiring the L. rhamnosus strain, which may have provided them with the

opportunity to consume a probiotic supplement or dairy product. Contact with a family member or

other individual who had the strain in their microbiome could also be responsible for colonization

of the HCT patient.

If this L. rhamnosus strain is a commonly used probiotic supplement or is found in commonly

consumed dairy products, it may be found in other gut microbiome sequencing datasets. Comparing

MAGs from this cluster against all Genbank genomes revealed a maximum alignment-based ANI

of 99.95% to L. rhamnosus ATCC 8530 [134]. Instrain-based comparisons against this reference

had a maximum popANI of 99.98%, below the putative transmission threshold. We then searched

against all genomes in the Unified Human Gastrointestinal Genome collection41 and identified two

genomes that were nearly identical to the strain found in HCT patients. These genomes were

originally from the Human Gastrointestinal Bacteria Culture Collection[51] (accessions ERR2221226
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and ERR1203919, belonging to the same isolate per a personal communication with the authors).

Assembled isolate and patient-derived genomes had ≥99.99% ANI; inStrain-based SNP comparisons

had ≥99.999% popANI. This suggests that a L. rhamnosus strain that is nearly identical to the

genomes in our HCT patients has been isolated from human stool in the past.

4.4 Discussion

Our investigation using high-resolution metagenomic sequencing attempts to quantify if and when

patient-patient microbiome transmission is involved in the spread of pathogenic organisms. We first

found that hospitalized HCT patients frequently harbor HAI organisms in their gut microbiome,

validating previous studies which used culture-based approaches or 16S rRNA sequencing[170, 7,

136]. MAGs created from patient samples had high identity to several globally disseminated and

antibiotic resistant sequence types, including Escherichia coli ST131 and ST648. Interestingly,

whereas ST131 is a well-recognized multi-drug resistant pathogen, ST648 is nearly as prevalent as

ST131 in our sample collection, and may thus be an emerging pathogen in this patient population.

Despite the high degree of temporal and spatial overlap between patients in our study, we found

no association between these factors and the taxonomic similarity of patient microbiomes, and only

a weak association between hospital overlap and maximum strain identity. These findings suggest

that patient-patient transmission is not driving microbiome composition, but individual strains may

still be shared between patients. We did not identify any pairs of patients harboring E. coli strains

with popANI values above the 99.999% popANI transmission threshold. Taken together with the

observation that E. coli is commonly detected in the patient’s microbiome upon admission, this

finding argues that patients usually enter the hospital with an ”individual-specific” E. coli strain

and do not frequently transmit it to others. An exclusion principle may be at play, where an E. coli

niche can only be filled by a single strain and new strains are unlikely to engraft when the niche is

already occupied. In contrast to E. coli, we observed four pairs of patients with E. faecium strains

that were more similar than 99.999% popANI. In one case, the two patients spent 11 days sharing

a room and bathroom prior to observing the shared strain. Direct links between patients were less

clear or non-existent in the other three cases, and transmission through unsampled intermediates

or acquisition from an environmental source may have been responsible. We also found evidence

for an E. faecium strain in a published dataset from HCT patient microbiomes[144] that had above

99.999% popANI to a strain in our sample collection. While this finding is likely not the result of

patient-patient transmission, it does indicate that very similar strains may exist within patients in

different geographic locations.

We then expanded the transmission analysis to examine all species that were present in the

microbiome of multiple patients. Identical Hungatella hathewayi strains were found in two patients

who were in the hospital together for 34 days and roommates for a single day. Earlier samples
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from patient 11662 had a significantly different H. hathewayi strain than the strain present in later

samples. It is possible that the earlier colonization with the same species exhibited a priority ef-

fect[52] and primed this individual to be re-colonized. In another set of patients who overlapped

in the hospital for 11 days and were roommates for nine days, we identified identical Akkermansia

muciniphila strains. In both examples, the likely “recipient” patient experienced BSI prior to the

putative transmission event. The subsequent antibiotic treatment initiated for the treatment of BSI

resulted in vast microbiome modification and simplification, which may have opened a niche for the

new organism to engraft into. Both H. hathewayi and A. muciniphila can survive outside the host

for periods of time, but H. hathewayi can form spores that enable it to live in aerobic conditions

for days[24]. In the case of H. hathewayi transmission, patient 11662 remained in the same room

with a shared bathroom after the single day of overlap with patient 11639. Spores surviving on

surfaces may be responsible for transmission, given the relatively short period of overlap. In these

cases, patient-patient transmission may help in the recovery of microbiome diversity following BSI

and may play a role in ameliorating post-HCT inflammatory processes, such as acute graft-vs-host

disease. Finally, we observed identical probiotic species in multiple patients without clear geographic

or temporal links, including Lactobacillus rhamnosus, Lactobacillus gasseri, and Streptococcus ther-

mophilus. Acquisition from a commercially available probiotic or live-active culture food appears to

be the most likely explanation. While patients hospitalized for HCT were not allowed to consume

probiotics or high-bacterial dairy foods, a majority of patients were discharged after HCT and prior

to a subsequent admission, upon which L. rhamnosus was detected. Many patients lost the strain in

later samples, independent of antibiotic prescription, suggesting that L. rhamnosus was a transient

colonizer. This matches the observation that abundance of probiotic species in the gut often declines

after supplementation ends[167].

The healthy adult gut microbiome is relatively resistant to perturbation and colonization with

new strains or species[99]. In contrast, mother-to-infant transmission of bacteria and phages is

common and well-described[13, 159, 195]. Patients in our study often shared spaces, were exposed

to dramatic “niche clearing” therapies and were often immunosuppressed. We frequently observed

patients acquiring new organisms into their gut microbiome during their hospital stay, especially

following BSI. Still, we found that patient-patient transmission of gut microbes is relatively rare.

This suggests that age, rather than perturbation or microbial exposure, may play the largest role

in microbiome transmission. There are also several alternative explanations for the relative lack of

transmission between patients. First, the adult gut microbiome may remain densely colonized even

when dramatically perturbed by antibiotics and chemotherapy, and thus resistant to invasion with

new strains. Strains we observed in later samples may have existed at low very levels in earlier

samples from the individual, therefore evading detection. Second, it is possible that the microbiome

of healthcare workers, hospital visitors, or other staff serve as the source of newly colonizing strains.

Third, it is possible that the built environment, equipment used in the care of these individuals,
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and other environmental sources such as food and personal items harbored the microbes that were

later transmitted. As we did not sample these other potential sources, it is difficult to know the

extent to which they contributed to the collective reservoir of potentially transmitted organisms.

Fourth, genetic drift and adaptive evolution may rapidly act on newly acquired microbes, as has

been described for E. faecium in the human gut[43] and E. coli in the mouse gut[56, 126, 14]. Rapid

drift or evolution would move the genomes of transmitted microbes below the popANI transmission

threshold. Finally, transmitted organisms may be killed by antibiotics before they can establish a

community within the host and thus be detected with metagenomic sequencing.

Our findings have important implications for hospital management and infection prevention.

55/149 patients (37%) in our study experienced BSIs, which is comparable to the rate of BSI in

other transplant centers[33]. Our findings suggest that microbiome transmission does not play a

large role in spreading infections among HCT patients, and that established contact precautions and

procedures for patient isolation were working as intended. Recently, the HCT ward at our hospital

moved to a new location with exclusively single rooms, which may further reduce the opportunity

for transmission.

Our analysis of transmission of microbes between HCT patients does have several limitations. We

analyzed hundreds of samples collected over many years, but most sampling was done on a weekly

basis. We did not explicitly collect samples on the day of admission or discharge. Our sample

collection also ignores previous hospital stays, either in a different ward in our hospital, or other

hospitals entirely, that may be responsible for the acquisition of HAI organisms. Many patients in

our study had one or two sequenced samples, limiting our inference about microbiome changes over

time. By contrast, the second largest study using shotgun metagenomics to study the microbiome

of HCT patients had much more dense sampling, analyzing 395 samples from 49 patients[144].

We also did not perform any sampling of the hospital environment, healthcare workers or visitors,

which would allow us to track transmission patterns in detail and more conclusively state where

newly acquired microbes originated[22]. Our work is also entirely based on metagenomic sequencing

data, which has its own challenges and sources of bias, including “barcode swapping”[115], which

could contribute to false positive transmission findings. To address this, we measured the impact

of barcode swapping in linked-read data, and eliminated linked-read and short-read comparisons

where a finding of identical strains could be the result of barcode swapping (see supplemental note).

Additionally, metagenomic sequencing may fail to detect lowly-abundant colonizers, especially when

samples are contaminated with host DNA[133], which is often the case in stool samples from HCT

patients. These challenges undoubtedly affect our sensitivity and specificity in measuring acquisition

and transmission of both pathogenic and commensal microbes. While our comparison methods were

sensitive to strain populations in the gut microbiome, we did not attempt to phase strain haplotypes.

Haplotype phasing with long-read sequencing technology like Nanopore or PacBio[18, 110, 179] could

help us determine whether sets of SNPs occurred in the same or different strains.
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Our study leaves several questions unanswered that we hope future work on microbiome trans-

mission will attempt to answer. First, our findings need to be validated in an external cohort

in a different hospital. Collecting stool samples during an infection outbreak may lead to more

transmission events being identified and may implicate microbiome transmission in perpetuating

the outbreak. Similar experiments in a pediatric patient population may reveal more gut-to-gut

transmission, as young children have microbiomes that are still developing and more susceptible to

colonization with new species. Our work did not investigate any possible sources of microbial trans-

mission other than the gut microbiota of HCT patients. A more granular study where samples are

collected from the hospital environment, as well as hand swabs and stool samples from healthcare

workers, visitors, and family members, is clearly indicated by these early results. As more transmis-

sion events are observed with high-resolution genomic methods, we will start to uncover the general

principles governing community assembly in the human microbiome. These new insights may help

prevent infections and other co-morbidities in this patient population in the future.

4.5 Methods

4.5.1 Cohort selection

Hematopoietic cell transplantation patients were recruited at the Stanford Hospital Blood and Mar-

row Transplant Unit under an IRB-approved protocol (Protocol #8903; Principal Investigator: Dr.

David Miklos, co-Investigator: Drs. Ami Bhatt and Tessa Andermann). Informed consent was

obtained from all individuals whose samples were collected. Stool samples were placed at 4°C imme-

diately upon collection and processed for storage at the same or following day. Stool samples were

aliquoted into 2-mL cryovial tubes and homogenized by brief vortexing. The aliquots were stored at

-80°C until extraction.

We identified all samples that had been sequenced previously by our group. Samples were

selected for linked-read sequencing to augment this collection. We examined the network of patient

roommate overlaps to find cases where we were likely to uncover transmission events, if they were

happening. These included patient pairs from whom we ideally had samples before and after the

roommate overlap period. 96 samples that provided the best coverage of roommate overlaps were

selected for linked-read sequencing.

The following clinical data were extracted from the electronic health record: demographic infor-

mation, underlying disease, type of transplantation (allogeneic vs. autologous), date and type of

bloodstream infection, medication prescriptions, time of admission and discharge and location of pa-

tients (rooms) over time. Hospital-wide BSI data were obtained from an electronic report generated

by the clinical microbiology laboratory. Medication prescription data was filtered by the following

criteria:

1. Only entries for antibiotics, antifungals, antivirals, antibacterials, and Pneumocystis jirovecii
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pneumonia prophylaxis were retained.

2. Medications with a missing start or end date were excluded.

3. Medications with a frequency of “PRN” (pro re nata, or as needed) or a prescription status of

“Canceled” were excluded.

4. Medications with a difference between start and end date of less than one day were excluded.

5. Medications prescribed to be taken by eyes, ears, topical application, or “swish and spit” were

excluded.

6. Medication prescriptions occurring outside the window of HCT date +/- 100 days were ex-

cluded for the aggregated analysis.

We do acknowledge the challenge of working with electronic health record data, and recognize

that there is a disconnect between medications prescribed and medications consumed by a patient.

4.5.2 DNA Extraction, library preparation and sequencing

DNA was extracted from stool samples using a mechanical bead-beating approach with the Mini-

Beadbeater-16 (BioSpec Products) and 1-mm diameter zirconia/silica beads (BioSpec Products)

followed by the QIAamp Fast DNA Stool Mini Kit (Qiagen) according to manufacturer’s instructions.

Bead-beating consisted of 7 rounds of alternating 30 s bead-beating bursts followed by 30 s of cooling

on ice. For samples subjected to linked-read sequencing, DNA fragments less than approximately 2

kb were eliminated with a SPRI bead purification approach[135] using a custom buffer with minor

modifications: beads were added at 0.9×, and eluted DNA was resuspended in 50 µl of water. DNA

concentration was quantified using a Qubit fluorometer (Thermo Fisher Scientific). DNA fragment

length distributions were quantified using a TapeStation 4200 (Agilent Technologies).

Short-read sequencing libraries were prepared with either the Nextera Flex or Nextera XT kit

(Illumina) according to manufacturer’s instructions. Linked-read sequencing libraries were prepared

on the 10X Genomics Chromium platform (10X Genomics). Linked-read libraries have a single

sample index, and were pooled to minimize the possibility of barcode swapping between samples

from patients who were roommates (see supplemental note). Libraries were sequenced on an Illumina

HiSeq 4000 (Illumina).

4.5.3 Sequence data processing

TrimGalore version 0.5.0[114] was used to perform quality and adapter trimming with the flags

“–clip R1 15–clip R2 15–length 60”. SeqKit version 0.9.1[152] was used to remove duplicates in

short-read data with the command “seqkit rmdup–by-seq”. Due to excessive processing time, this

step was skipped for linked-read data. Reads were mapped against the GRCh38 assembly of the
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human genome using BWA version 0.7.17-r1188[87] and only unmapped reads were retained. Quality

metrics were verified with FastQC version 0.11.8[12]. Bioinformatics workflows were implemented

with Snakemake[80].

4.5.4 Short-read classification with Kraken2

We classified all short-read data with a Kraken2[189] database containing all bacteria, viral and

fungal genomes in NCBI GenBank assembled to complete genome, chromosome or scaffold quality

as of January 2020. Human and mouse reference genomes were also included in the database. A

Bracken[100] database was also built with a read length of 150 and k-mer length of 35. Classifi-

cation results were processed into matrices and taxonomic barplots with the workflow available at

https://github.com/bhattlab/kraken2 classification. Bray-Curtis distances were calculated with the

R package vegan[119] version 2.5-7.

4.5.5 Assembly and binning

Short-read sequencing samples were assembled using SPAdes version 3.14.0[118] using the ‘–meta’

flag. Linked-read sequencing samples were assembled with Megahit version 1.2.9[86] to generate seed

contigs, which were then assembled with the barcode-aware assembler Athena[19]. Metagenome-

assembled genomes (MAGs) were binned with Metabat2 version 2.15[72], Maxbin version 2.2.7[192]

and CONCOCT version 1.1.0[6] and aggregated using DASTool version 1.1.1[157]. MAG complete-

ness and contamination was evaluated using CheckM version 1.0.13[129] and MAG quality was

evaluated by the standards set in[20]. All assembled contigs were classified with Kraken2 as de-

scribed above. To generate bin identifications, contig classifications were pooled such that contigs

making up at least two thirds the length of the bin were classified as a particular species. If a

classification could not be assigned at the species level, the process was repeated at the genus level,

and so on.

4.5.6 Genome de-replication and SNP profiling

MAGs were filtered to have minimum completeness 50% and maximum contamination 15% as mea-

sured by CheckM, then were de-replicated with dRep version 2.6.2[121] with default parameters

except the primary clustering threshold set to 0.95. In further steps, a single de-replicated genome

will be referred to as a cluster. Reads from all samples were mapped against the de-replicated set

of genomes with BWA. Clusters that had greater than 1x average coverage in at least two samples

were retained for further analysis. Individual bam files were extracted for each sample-cluster pair

with at least 1x coverage. Bam files were randomly subsetted to a maximum of 2 million reads for

computational efficiency. Alignments were profiled and then compared across samples with inStrain
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version 1.3.11[122] using default parameters. A Snakemake workflow for dRep and inStrain analysis

is available at https://github.com/bhattlab/bhattlab workflows.

4.5.7 Building phylogenetic trees

MAG Average Nucleotide Identity (ANI) trees (Figure 2 and 3) were created using the pairwise

alignment values from dRep, which uses the MUMmer program[83]. MAGs were filtered to be at

least 75% the length of the mean length of reference genomes used in the tree. Reference genomes

were selected by searching literature for collections of well-described isolates with genomes available.

References that were not relevant and clustered in isolated sections of the tree were removed. Pairwise

ANI values were transformed into a distance matrix and clustered using the ‘hclust’ function with

the ‘average’ method in R version 4.0.3[173]. Heatmaps were created using pairwise popANI values

from inStrain, transformed into a distance matrix, and hierarchically clustered using the ‘ward.D2’

method.

4.5.8 Determining transmission thresholds

To determine the ANI threshold to call a comparison a “putative transmission event” we evaluated

the distributions of ANI values for within- and between-patient comparisons for different species

(Figure S3). We often detected zero population SNPs in time course samples from the same patient,

including E. faecium in a pair of samples collected from the same patient 323 days apart. Mean-

while, between-patient comparisons typically had lower ANI values. To verify that transmission

events would also result in population ANI values near 100%, we examined external datasets where

transmission of bacteria in the microbiome is known to occur as a “positive control”. We gathered

sequencing data from stool samples of matched mother-infant paris[195] and fecal microbiota trans-

plantation donors and recipients[162] and processed them with the same methods. In these datasets,

we regularly observed genomes with 100% popANI between matched individuals, and did not find

cases of 100% popANI between unmatched individuals (Figure S4). In the ideal cases, we expect

transmission of bacteria between the microbiomes of HCT patients to result in genomes with 100%

popANI. However, the measured genomes may not reach this level of identity, due to mutations

or genetic drift since the transmission event, sequencing errors, or other factors. Therefore, we set

the transmission threshold at 99.999% popANI, equivalent to 30 population SNPs in a 3 megabase

(Mb) genome. Although this threshold is stringent, we recognize that it may allow for false positives

where two closely related strains exist in different patients solely by chance.

Despite our efforts to minimize the impact of barcode swapping on detecting transmission (see

Supplemental Note), we still identified many comparisons with >99.999% popANI that we believe

to be false positives. These were filtered out based on the following criteria: short read samples from

different patients that were sequenced on the same lane and shared one index sequence or linked read

samples that were sequenced on the same lane and reads mapping to the organism shared >40% of
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barcodes. We also removed pairs that could be affected by “secondary” swapping, where the two

samples were not directly affected, but an interaction between other samples from the two patients

could cause false positives. In total, we removed 31 comparisons from the final table with >99.999%

popANI.

4.5.9 Pairwise MAG comparison

MAGs were aligned with the mummer program using default settings[83] and filtered for 1-1 align-

ments. Dotplots were visualized with the “Dot” program[113] filtering for non-repetitive alignments

≥1 kb.

4.5.10 Antibiotic resistance gene detection

Antibiotic resistance genes (ARGs) were profiled in contigs from all samples using Resistance Gene

Identifier (RGI) and the Comprehensive Antibiotic Resistance Database (CARD)[4] with default

parameters. Genes were counted if they met the “strict” or “perfect” threshold from RGI. ARGs

were annotated both if they occurred on a contig in the MAG of interest, or anywhere in the

metagenomic assembly.

4.5.11 Isolation, culture and identification of VRE organisms

Stool samples from patients 11342 and 11349 were resuspended in glycerol and streaked on Spec-

traVRE (R01830, ThermoFischer Scientific) plates and incubated at 35 °C overnight. The following

day, four colonies from each of the plates that displayed growth were picked and streaked out on a

separate quadrant of fresh SpectraVRE plates. These Round 1 (R1) plates were incubated at 35 °C
overnight and checked for growth the following day. For each R1 plate, a colony was picked from

each quadrant and streaked out on a new quadrant of a fresh SpectraVRE plate. These Round 2

(R2) plates were incubated at 35 °C overnight and checked for growth the following day. For each

R2 plate, a colony from each quadrant was subjected to MALDI-TOF bacterial species identification

analysis on a Bruker Biotyper (Burker) per manufacturer instructions
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4.6 Supplemental note: Mitigation of laboratory contamina-

tion and barcode swapping

Any study of transmission is susceptible to confounders that may introduce false positives. Two

major sources are laboratory contamination and barcode swapping, both of which can make it

appear as if identical strains were present in multiple samples. To minimize the chance of laboratory

contamination, samples selected for linked-read sequencing were randomized prior to extraction into

groups of 16, subject to the constraint that the number of samples from roommate pairs in the same

extraction batch were minimized. These groupings were carried out through library preparation.

Similar constraints were used when preparing pooled libraries for sequencing.

It is a recognized phenomenon that pooled Illumina sequencing libraries experience “barcode

swapping” or “index hopping”[115] when libraries are differentiated by a single sample index. While

this issue is avoided by using unique dual index sequences for all samples in a pool, our laboratory

was not aware of the issue until 2018, and older libraries were prepared without a unique dual

indexing strategy. Linked-read libraries only contain a single sample index sequence, which makes

it impossible to eliminate the effect of barcode swapping, other than the costly option of devoting

an entire lane to each sample.

In linked-read sequencing libraries, we were able to estimate the impact of barcode swapping.

There are 10 million possible 10X barcodes (these are the barcodes which convey long-range in-

formation, different from the sample index barcodes). While a subset of 10X barcodes will overlap

between two samples, the fraction of barcodes from reads mapping to a single organism should be lim-

ited. We mapped reads from all linked-read samples against the uniquely identifiable p-crAssphage

genome[44]. Then we looked at the fraction of 10X barcodes that overlapped between samples.

Samples sequenced on different lanes typically had 0-30% 10X barcode overlap. Samples sequenced

on the same lane had 60-100% of barcode overlap in some cases. EC95853 We set a threshold of 40%

overlap of barcode sets to call a comparison “swapped” and remove it from analysis. By counting

reads believed to be assigned to improper samples because of barcode swapping, we estimate the

rate in our linked-read data to be 0.1-0.2%.

While this rate may seem small, at high sequencing depth and with abundant organisms, it

quickly results in enough reads being swapped to assemble a genome or conduct an inStrain com-

parison. Indeed, we found cases where multiple species (instead of the single species believed to be

the result of transmission events) were shared between linked-read samples sequenced on the same

lane that were likely the result of barcode swapping.

We also attempted to measure the degree of barcode swapping in dual-indexed lanes of short

read Illumina sequencing. Using the uniquely identifiable p-crAssphage genome as a marker for

swapping, we observed roughly 0.5% of sequencing reads swapped between samples on the same lane

that shared one index sequence. Samples on the lane that shared no sequencing indices often had
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p-crAssphage below 1e-5%. Simple relative abundance metrics cannot distinguish between barcode

swapping and a true difference in abundance between samples. However, even with the 0.5% rate

of swapping, we regularly observed >5x coverage of the p-crAssphage genome in what we believe

to be the truly negative samples, and the resulting inStrain comparisons revealed sufficient paired

genome coverage and 100% popANI. We never observed identical p-crAssphage genomes between

samples from different patients sequenced with unique dual indices or on different lanes.

An example of p-crAssphage relative abundance measured with Kraken2 in a single lane of se-

quencing is shown in the figure below. Here, we believe the sample 11713 98 in blue is a “true

positive” for p-crAssphage. While measured abundance in the other samples is likely some combina-

tion of true abundance and barcode swapping, the separation between samples that share one or zero

index sequences is clear. For short-read sequencing samples, we know which pairs of samples share

one of two index sequences and have the possibility of being impacted by swapping. We cannot esti-

mate the impact of barcode swapping like was done for linked-read datasets. We simply eliminated

all comparisons where two samples had the possibility of barcode swapping, and all comparisons

that could be affected by “secondary” swapping, where the samples were not directly affected, but

an interaction between other samples from the two patients could cause false positives. While this

filtering may discard legitimate transmission events, we believe it is necessary to lower the number

of false positives.

Previous DNA extraction and short-read sequencing efforts did not follow the randomization

constraints above and we cannot guarantee that laboratory contamination did not happen at some

point in the process. However, we note that cases of laboratory contamination or barcode swapping

would result in the entire microbiome composition of one sample being transferred to another. After

our stringent filters, we only discovered one case where patients shared two separate species. As

these were both Lactobacillus species, our hypothesis about probiotic consumption is a possible

explanation.

4.7 Figures
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Figure 4.1: Overview of the methods, data generated, and clinical features of this sample
set. a) Overview of the wet lab and computational workflow used to generate sequencing datasets,
bin MAGs and compare strains between patients. b) Number of stool samples sequenced per patient.
c) Percentage of MAGs meeting each quality level, stratified by sequencing method. d) Of patients
who have the given organism detected (≥50% coverage breadth) in a time course sample, percentage
of patients where the organism was below the detection threshold (<50% coverage breadth) in the
first sample. e) Percentage of patients with at least one sample positive with (≥1% relative abun-
dance) or dominated by (≥30% relative abundance) hospital acquired infection (HAI) organisms, as
identified by Kraken2 and Bracken. f) Percentage of bloodstream infections (BSIs) identified with
each organism or group in HCT patients and hospital-wide.
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Figure 4.2: The impact of antibiotic prescription and geographic overlap on patient
microbiomes. a) Aggregated prescription history of 20 of the most frequently prescribed antibiotic,
antifungal and antiviral drugs. Each panel shows the percentage of patients who were prescribed a
drug at the given day, relative to the date of HCT. Shannon diversity at the species (b) or genus
(c) level compared to total antibiotic-days in the seven days prior to sample collection. (d) Samples
with or without a single species dominant (≥30%), compared with total antibiotic-days in the prior
seven days. Taxonomic similarity at the species level (1 - Bray-Curtis dissimilarity) between samples
from different patients, evaluated against days of hospital overlap (e) or hours of roommate overlap
(f) prior to the sample. Maximum inStrain popANI achieved by comparing all strains in all samples
from two patients, evaluated against hours of roommate (g) or days of hospital overlap (h) prior to
the earlier sample. In all panels, trend lines are calculated as the best-fit linear regression between
the X and Y variables. R and p values are the pearson correlation coefficient and correlation p-value,
respectively.
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Figure 4.3: Alignment average nucleotide identity (ANI) tree of Escherichia coli MAGs.
MAGs identified as E. coli, medium quality or above and at least 75% the mean length of the
reference genomes are included. Several reference genomes are included and labeled with an asterisk.
Clusters at the 99% ANI level corresponding to ST131 (purple) and ST648 (orange) are highlighted.
Alignment values used to construct this tree can be found in Table S7.
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Figure 4.4: Enterococcus faecium strains compared between patients. a) Alignment average
nucleotide Identity (ANI) based tree of E. faecium MAGs. MAGs identified as E. faecium, medium
quality or above and at least 75% the mean length of the reference genomes are included. Several
reference genomes are included and labeled with an asterisk. Two clades containing samples from
multiple patients are highlighted for further comparison. Alignment values used to construct this
tree can be found in Table S7. b, c) Heatmaps showing pairwise popANI values calculated with
inStrain for clades B and C. Color scale ranges from 99.99-100% popANI and is in log space to
highlight the samples with high popANI. Cells in the heatmap above the transmission threshold of
99.999% popANI are labeled. Four groups containing samples from multiple patients with popANI
values above the transmission threshold are highlighted on the top of the heatmaps.
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Figure 4.5: Microbiome composition of patients with putative Enterococcus faecium
transmission events. Each panel shows the composition of two patients over time. The height
of each bar represents the proportion of classified sequence data assigned to each taxon. Samples
are labeled relative to the date of the first sample in each set. Bars above each plot represent the
approximate time patients spent in the same room (black bars) or in the hospital (grey bars). Red
symbols indicate approximate dates of bloodstream infection with the specified organism. Hypoth-
esized direction of transmission progresses from the top to the bottom patient. Fractions of the bar
with >99.999% popANI strains in each panel are indicated with solid colors, and different strains
are indicated with hashed colors. All taxa except E. faecium are shown at the genus level for clarity.
a) Case 1: Putative transmission from patient 11342 to 11349. b) Case 2: Putative transmission
from patient 11575 to 11568. c) Case 3: Putative transmission from patient 11605 to 11673.
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Figure 4.6: Microbiome composition of patients with putative Hungatella hathewayi or
Akkermansia muciniphila transmission events. Each panel shows the composition of two
patients over time. The height of each bar represents the proportion of classified sequence data
assigned to each taxon. Samples are labeled relative to the date of the first sample in each set. Bars
above each plot represent the approximate time patients spent in the same room (black bars) or in
the hospital (grey bars). Red symbols indicate approximate dates of bloodstream infection with the
specified organism. Hypothesized direction of transmission progresses from the top to the bottom
patient. Fractions of the bar with >99.999% popANI strains in each panel are indicated with solid
colors, and different strains are indicated with hashed colors. All taxa except H. hathewayi or A.
muciniphila are shown at the genus level for clarity. a) Putative case of H. hathewayi transmission
from 11639 to 11662. b) Putative case of A. muciniphila transmission from 11742 and 11647.



4.7. FIGURES 87

Figure 4.7: Lactobacillus and Streptococcus strains are acquired after HCT and iden-
tical between many patients. PopulationANI based tree of (a) Lactobacillus rhamnosus, (b)
Lactobacillus gasseri, (c) Streptococcus thermophilus strains present in patient samples. Clades
containing samples from different patients with ≥99.999% popANI are highlighted with a grey back-
ground. Clades with 100% popANI between all pairs are additionally bolded and italicized. d)
Timeline of approximate date of samples containing a L. rhamnosus strain in the transmission clus-
ter in (a). Patients who were discharged from the hospital after HCT and prior to acquiring L.
rhamnosus are bolded and italicized. e) Microbiome composition of patient 11537. L. rhamnosus
abundance at each time point is indicated above the bar. This patient received HCT on relative day
3.
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4.8 Supplementary Figures

Figure 4.8: Analysis of hospital geography. a) Layout of rooms in the HCT ward. Room
numbers are indicated and double occupancy rooms are underlined. b) Network view of patients
who were roommates for at least 24 hours. Each node represents a single patient, colored according
to if they have a banked stool sample or metagenomic sequencing data present. Edges are drawn
between patients who were roommates, and edge width represents the length of overlap in the same
room. c) Histogram of the number of rooms patients occupied for at least 24 hours. d) Histogram
of the number of unique roommates patients had for at least 24 hours.
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Figure 4.9: Antibiotic resistance genes detected in HCT patient microbiome samples. In
each panel, samples are rows and resistance genes are columns. Samples are ordered and clades are
highlighted corresponding to the respective figure in the main text. Cells are colored whether the
gene was detected in the respective MAG from the sample, or just in the metagenome (indicating
it may be on a plasmid). a) Beta-lactamase genes detected in E. coli samples from Figure 2. The
gyrA gene was detected with the CARD protein variant model, which requires a genetic variant
conveying resistance in addition to the presence of the gene. b) Vancomycin resistance genes of the
vanA operon detected in E. faecium in samples from Figure 3.
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Figure 4.10: Distribution of popANI values comparing samples from the same or different
patients. Distributions are split by species and the most common 25 species are shown. While in
many cases the two distributions overlap, very rarely did popANI values comparing samples from
different patients exceed the 99.999% transmission threshold. Comparisons with <99.5% popANI
are omitted from the figure for clarity.
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Figure 4.11: InStrain analysis of the five most common species in external datasets where
transmission is expected to occur. Distributions of popANI values are separated based on the
individuals the samples came from, with putative transmission events contained in the far right
panel. a) Metagenomic sequencing datasets from mother-infant pairs18. The maximum popANI
value obtained when comparing samples from different families was 99.995%. b) Metagenomic
sequencing datasets from fecal microbiota transplantation donors and recipients. The maximum
popANI value obtained comparing samples from individuals not related by FMT was 99.998%
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Figure 4.12: Enterococcus faecium (a) and Escherichia coli (b) strains compared to
external datasets. Including hospitalized adult and pediatric HCT patients, hospitalized infants
and vancomycin-resistant E. faecium isolates3,69-73. Panels are separated according to whether
comparisons were made within the data in this manuscript (Bhatt-Bhatt), between our data and
external data (Bhatt-SRA) or within external data (SRA-SRA).
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Figure 4.13: Dotplots showing pairwise alignment of MAGs in cases of putative trans-
mission of the given species. Blue lines along the diagonal indicate 1-1 homology between the
two sequences. Green lines indicate inversions that are likely the result of assembly or binning
errors. a) E. faecium MAGs from patients 11342 and 11349, corresponding to figure 4a. b) E.
faecium MAGs from patients 11575 and 11568, corresponding to figure 4b. c) E. faecium MAGs
from patients 11605 and 11673, corresponding to figure 4c. d) H. hathewayi MAGs from patients
11639 and 11662, corresponding to figure 5a. e) A. muciniphila MAGs from patients 11742 and
11647 corresponding to figure 5b.
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Figure 4.14: Antibiotic prescription and taxonomic composition of patients with nearly
identical Enterococcus faecium strains. E. faecium abundance is shown in blue and indicated
with text. Other taxa are shown in grey. All dates are relative to HCT for the particular pa-
tient. Approximate dates of BSI are shown with red symbols. Circle: Klebsiella pneumoniae, X:
Enterococcus faecium, triangle: Escherichia coli.
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Figure 4.15: Antibiotic prescription and taxonomic composition of patients with nearly
identical Hungatella hathewayi or Akkermansia muciniphila strains. Other taxa are shown
in grey. All dates are relative to HCT for the particular patient. Approximate dates of BSI are shown
with red symbols. Circle: Streptococcus mitis, X: Klebsiella pneumoniae.
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Figure 4.16: Antibiotic prescription and taxonomic composition of patients with nearly
identical Lactobacillus rhamnosus strains. L. rhamnosus abundance is shown in purple and
indicated with text. Other taxa are shown in grey. All dates are relative to HCT for the particular
patient.
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4.9 Tables
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Attribute n %

Total sequenced patients 149 100%
AGE

≤ 30 9 6%
31-40 17 11%
41-50 24 16%
51-60 38 26%
61-70 55 37%
≥ 71 6 4%

SEX
Sex M 87 58%

DIAGNOSIS
ALL: Acute lymphocytic leukemia 21 14%
AML: Acute myelogenous leukemia 42 28%

CML: Chronic myeloid leukemia 6 4%
HL: Hodgkin lymphoma 4 3%

MDS: Myelodysplastic syndrome 42 28%
NHL: Non-Hodgkin lymphoma 23 15%

OTHER: Other malignancy 11 7%
GRAFT

Allo 132 89%
Auto 17 11%

GVHD
Accute GVHD yes 88 59%
Chronic GVHD yes 29 19%

Bloodstream Infection (BSI) Genera, within 0-180 days after HCT
Any BSI 54 36%
Bacillus 1 1%

Enterobacter 2 1%
Enterococcus 7 5%
Escherichia 8 5%

Gemella 1 1%
Klebsiella 6 4%

Pseudomonas 2 1%
Rothia 4 3%

Staphylococcus 14 9%
Streptococcus 9 6%

Table 4.1: Aggregated characteristics of patients with samples investigated in this study
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all patients patients with at least one sequenced sample
Number of patients spent ≥24h on ward 923 149

Days spent as inpatient on BMT ward
Mean 21.9 37.6

Median 18 30.8
SD 18.2 21.8
Min 1 8.7
Max 175.4 137.7

Number of rooms occupied ≥24h
Mean 2.6 3.5

Median 2 3
SD 1.3 1.7
Min 1 1
Max 9 9

Number of patients overlapped ≥24h
Mean 55.9 80.8

Median 48 72
SD 30.7 38.6
Min 8 25
Max 246 198

Number of patients roommates ≥24h
Mean 1.5 2.5

Median 1 2
SD 1.5 2.4
Min 0 0
Max 13 13

Table 4.2: Aggregated statistics of temporal geographic data for all patients on the ward during the
study period
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Attribute n
Total stools sequenced 401

Total sequencing datasets 405
short read (SR) 312
linked read (LR) 93

Sequenced with SR and LR 4

Samples sequenced per patient median range SD
2 1 - 13 2.4

Reads after processing (millions) median range SD
SR 7.6 0.01 - 28.8 4.4
LR 104 0.9 - 323.6 40

s Assembly N50 (kilobase-pair) median range SD
SR 17.2 0.7 - 163.6 24.8
LR 147.6 9.5 - 956.3 168.5

Binned genomes n %
SR 2859

High Quality 103 4%
Medium Quality 2124 74%

Low quality 632 22%
LR 1900

High Q Bowers 518 27%
High Q Nayfach 950 50%

Low quality 432 23%

Table 4.3: Aggregated statistics of sequencing datasets and metagenome-assembled genomes (MAGs)
generated in this study
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Building bioinformatics workflows

for scalability and reproducibility

Computational analysis of large-scale genomics experiments is no small feat. With terabytes of

sequencing data, thousands of samples and hundreds of measured covariates, the data that goes

into today’s genomics publications is increasingly complicated. However, modern tools for workflow

management, metadata tracking and distributed computing make these tasks much easier. With

a little foresight and planning ahead of time, these tools enable computational scientists to spend

more time on interesting analysis and less time on data processing. Here, I’ll share a few principles

I’ve learned from both conducting large bioinformatics and computational biology experiments and

developing data processing pipelines for the lab and the research community as a whole.

5.1 Use a workflow management system

The easiest way to create a scalable and reproducible data analysis pipeline is to organize all code

under a workflow management system. Modern workflow managers include Snakemake, Nextflow,

Workflow Description Language (WDL) and others [191]. These tools provide a way to define steps

of a bioinformatics analysis and can integrate scripts or tools written in many different languages.

The four main benefits of a workflow manager, as defined in [191], are data provenance, portability,

scalability and re-entrancy (the ability to resume a workflow without re-executing completed steps).

I used Snakemake and Nextflow during my thesis research, so my comments will be limited to

those two. I found Snakemake to be easier to learn, teach to other students and rapidly prototype

workflows. Snakemake pipelines are written in python, so many people are immediately familiar

with the syntax. Under the hood, Snakemake models a workflow as a directed acyclic graph, where

files are nodes and steps to convert input files to output files are edges. In addition to being easier

101
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to understand, this model allows for pre-computing the total number of steps to be conducted in a

workflow and easier re-entry into workflows.

Nextflow may have a higher barrier to entry but is more extensible. Nextflow pipelines are

written in groovy and use a more complicated “channel and process” model for defining workflow

steps. While not as easy to learn or rapidly prototype workflows, Nextflow is quicker to deploy

on cloud computing architecture and has a much larger set of community-developed workflows for

common bioinformatics tasks.

5.2 Use established and validated pipelines when possible

Bioinformatics is no different than other fields of science, you should “stand on the shoulders of

giants.” Unless you’re developing a new method or novel analysis, someone has probably already done

the computational task you’re thinking about. For example, the nf-core community for Nextflow [47]

has a variety of pipelines that are well-developed, tested and maintained. An equivalent community

exists for Snakemake (https://github.com/snakemake-workflows) but does not offer as many

workflows. I do take pride in the workflows I write, and want to “own” as many of them as possible.

However, using established pipelines, like nf-core, has likely saved me hundreds of hours of work

and allows me to focus on higher-impact parts of my science. Plus, you can always fork the github

repository and add features or make the pipeline your own.

In addition to these established communities, many laboratories have github pages with estab-

lished workflows that have been validated through use in publications. For Example, our bhatt-

lab workflwows [161] and kraken2 classification [160] are used within the lab and by collaborators

around the world. While using established pipelines can certainly speed up development of a bioin-

formatics workflow, it’s important to keep in mind that developers can fall behind on updating

software, taking advantage of new features or incorporating new tools. Most developers are un-

derpaid grad students or unpaid volunteers, and using these pipelines should come with a warning

“some assembly may be required.”

5.3 Treat metadata as a first-class citizen

Metadata is just as, if not more important, than the sequencing data from an experiment. An error

in the metadata for an experiment can be catastrophic. Luckily there are several tools to help solve

metadata issues. For example, databases like project RedCap [63] can be used to collect survey

data from users, as well as maintain databases of clinical metadata, sample locations, and similar

covariates. Compared to traditional programmatic databases, a RedCap database is easier to set up

and maintain for scientists without a strong computer science background.

To keep metadata and data harmonized, I rely on a package CMapR and the gctx file format

https://github.com/snakemake-workflows
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developed by my previous group at the Broad Institute [46]. A gctx file is a two dimensional data

matrix that always has associated row and column metadata. Convenient subsetting and filtering

operations also subset the associated metadata. That way, metadata is never the wrong size or out

of date. As a practical example, I use a gctx object for read count and relative abundance matrices

when doing microbiome classification with Kraken2 [189]. The row metadata contains the NCBI

taxonomic identifier and the complete classification lineage, while the column metadata contains

sample names and any associated group or clinical data.

5.4 Leverage high-performance computing or cloud infras-

tructure

The compute, memory and storage requirements of large-scale genomics experiments typically exceed

that of laptop or desktop workstations. Most computational labs are familiar with university-

provided supercomputing services, like SCG or Sherlock at Stanford. These services typically charge

a membership fee plus a per-cpu-hour compute charge, and are convenient to access with included

support services. However, supercomputing infrastructure may not scale large enough for the needs

of a particular project or may be delayed because resources are shared across multiple labs. In these

cases, cloud computing offers additional benefits.

Cloud computing platforms, like Amazon Web Services (AWS) or Google Cloud Platform (GCP)

offer inexpensive access to compute that can scale theoretically infinitely. Users only pay for the

compute, storage and bandwidth that they use. With minimal effort, users can spin up a virtual

machine with up to 96 cores for a low hourly cost. With a more complex setup, a workflow manager

can automatically initialize and deploy compute jobs for each step in a bioinformatics workflow. Note

that these systems are more complicated than a traditional managed supercomputer environment,

where it’s likely there are several university employees managing resources and data access. It’s likely

best to have one lab member with more of a computer science or software engineering background

“in charge” of these resources for the rest of the lab. It’s also important to keep a close eye on costs.

While compute may be cheap, data storage and download is relatively expensive and can easily rack

up charges with the user being unaware. Most cloud computing providers offer grants for academic

research that are easy to obtain.

5.5 Best practices for developing bioinformatics workflows

While developing bioinformatics pipelines for our lab and collaborators, I’ve settled upon a few key

rules.

• Workflows need to be easy to install and use. This is perhaps the most important requirement

- more so than additional functionality or publication in a journal. Some of the most widely
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used and reliable bioinformatics software remains unpublished, including snippy for bacterial

SNP calling and core genome alignment (https://github.com/tseemann/snippy)

• Package software with conda and docker containers so users can easily install the software, or

use the container with no installation required.

• Maintenance and responding to bugs/issues is a challenging and thankless task, especially when

students leave the lab. Maintaining software should remain a priority, and the lab should set an

expectation that, for example, students will maintain software for two years after publication,

even if they graduate before that date.

• Provide a thorough readme and simple test dataset to ensure installation and usage works as

expected.

• Outputs, both data table and figures, should be easily interpretable to the users. More detailed

and verbose output should be made available if needed.

The best examples of microbiome-related software that I’ve encountered so far continue to be

the Biobakery suite of tools from the Huttenhower lab [16] and Matt Olm’s tool dRep [121]. These

tools are widely used - you frequently see references to them in talks and publications and most

people in the field know the core idea behind the tools.

https://github.com/tseemann/snippy
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Future directions and conclusions

6.1 Future directions of the mother-infant crAss-like phage

transmission work

While a few future directions were listed in the main text of this work, I would like to expand on

some areas that have continued to interest me in the time since publication.

6.1.1 Extension to other phages

CrAss-like phages remained undiscovered for years because researchers didn’t deeply investigate

unclassified metagenomic sequencing reads. In my mother-infant work, I only looked at phages that

had been previously discovered (crAss-like phages and other phages present in NCBI Genbank). This

choice allowed me to conduct a focused analysis and eliminated the need for methods to discover

novel phages, which were not very mature at the time.

More recent tools and databases of phage sequences have changed this paradigm. For example,

virFinder [138], VirSorter [142], and VIBRANT [77] are all methods to identify likely phage contigs

in assembled metagenomic sequencing data. Recent publications with large databases of novel phage

families [27, 150] have added to the collection of phage genomes available for comparison. There are

likely to be other phages that are similarly transmitted from mothers to infants; using these tools

in a revised analysis should uncover new and interesting patterns of transmission.

6.1.2 Discovering bacterial hosts of novel phages

The setting of mother-infant or Fecal Microbiota Transplantation (FMT) donor-recipient microbiome

transmission is also appropriate to discover the host of crAss-like and other phages. If a phage is

transmitted, engrafts and persists in the recipient’s microbiome, the bacterial host must also be
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present. The host could be present in the recipient’s microbiome prior, or it could be transmitted

alongside the phage. A significant association between the presence or abundance of a phage and

the host should emerge in a large enough sample collection. I attempted to identify the elusive

host for crAss-like phages by comparing bacterial species abundance in crAss-like phage positive

and negative infant samples. However, the limited sample numbers in the mother-infant datasets

I examined precluded any significant associations. An investigation that quantifies bacterial and

phage transmission together in a larger sample collection may be able to uncover signals of phage-

host relationships.

6.1.3 Quantifying bacterial strain diversity upon transmission

I quantified the strain diversity of crAss-like pages upon transmission and demonstrated that the

phage population experiences a bottleneck and decrease of strain diversity. However, the original

authors of mother-infant transmission datasets [195, 13] did not examine strain diversity at the

single nucleotide level. Now that we have the ability to generate complete bacterial metagenome-

assembled genomes (MAGs) and examine variants and nucleotide diversity at the strain level, it

would be interesting to repeat the same experiments for the transmitted bacterial strains. I expect

the most abundant strain within a species to be the most frequently transmitted from mothers to

infants, with a similar decrease in diversity upon transmission.

6.2 Future directions of the HCT patient transmission work

6.2.1 Validation, replication and extension of this work

While I found evidence for transmission of commensal and pathogenic bacteria between the gut

microbiomes of adults recovering from HCT, the sample set I investigated was not large enough to

quantify the rate of transmission of different organisms. The results from my work need be replicated

in a larger cohort, potentially at a different hospital. The same hypotheses about transmission could

also be tested in a pediatric cohort, because more transmission may be expected in younger patients.

Although mother-infant transmission is most common in the first few years of life, the gut microbiome

continues to develop and acquire new strains into adolescence. Alternatively, transmission between

the patient and family members could be investigated in the setting of allogeneic transplants at

home [62].

The bacterial strains I hypothesized to be transmitted between individuals may persist in the

hospital reservoir. Performing environmental sampling of surfaces in the patient’s room, including

beds, sinks and toilets, could help identify reservoirs for the potentially transmitted strains. Ad-

ditionally, swabbing the hands and analyzing stool samples from healthcare workers and hospital

visitors could help determine if these individuals were sources for the new strains colonizing patient
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microbiomes. I only analyzed transmission of bacterial species in my work, although I did test for

transmission of crAss-like phages with null findings. Expanding the results of this work to phages

and fungi may reveal other interesting trends in this cohort.

6.2.2 HCT patients often acquire new bacterial strains. Where do they

come from?

I frequently observed that HCT patient microbiomes return to a similar state after perturbation

with antibiotics. For example, some bacterial species are present upon hospital admission, become

undetectable during periods of antibiotic use, and reappear later when the microbiome recovers

diversity. Often the strains in early and late samples have significantly different genomes, indicating

that a new strain may have colonized the patient’s microbiome. It’s also possible that a strain at

very low abundance initially survived and proliferated after antibiotic use ceased. Given the high

depth of sequencing in many of these patient samples, I believe that strain persistence is insufficient

to explain all cases of species re-emergence.

Species re-emergence often occurs in bacterial species that are not frequently detected within

HCT patient microbiomes. For example, Hungatella hathewayi is present in less than 10% of patients,

but appears both in pre and post HCT samples from patient 11662 (Figure 4.6), after becoming

undetectable in the middle four samples. Comparing early and late genomes in this case revealed

¡95% ANI, below the 95% threshold commonly used to define different species. Earlier presence

of a species may prime the microbiome to return to a state where the species is present. This

“priority effect” [52, 163, 165] from prior colonization may assist the species to re-colonize the gut

in a more favorable scenario, given the proper exposure. I don’t believe there’s enough patients with

dense time course sampling in the data generated from our study to fully investigate this question.

Samples from our study could be combed with the HCT patient microbiome data from Memorial

Sloan Kettering Cancer Center [194], which contains more dense sampling of fewer patients. Future

research may shed light on how priority effects influence the microbiome following HCT, antibiotic

treatment and community recovery.

6.2.3 Are roommates at risk for colonization with pathogenic bacteria?

I initially hypothesized that patients who were roommates in the hospital would be more likely to

transmit pathogenic strains. However, I found relatively limited transmission of bacteria between

patients who were roommates, including a single case involving Enterococcus faecium and two cases

involving commensal bacteria. I did not identify any bacterial strains shared between more than

two patients, indicating that there are not common, hospital-acquired bacterial strains colonizing

multiple patients. Finally, I did not find an association between patients who were roommates

and the incidence of bloodstream infections. Therefore, I do not believe exposure to a roommate
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following HCT is a significant risk factor for colonization with pathogenic bacteria or for acquiring a

bloodstream infection. Roommate exposure may still be a consideration for communicable illnesses,

such as COVID-19.

It was recently shown that autologous FMT following HCT can improve microbiome diversity and

reduce the incidence of graft versus host disease (GVHD) [36, 172]. FMT is a crude therapy where

the entire microbiome of a donor is given to the host. Doctors are not able to control which microbes

are present in a donor sample, nor which microbes engraft and persist in the recipient’s microbiome.

If an uncontrolled and drastic therapy like FMT is beneficial to HCT patients, perhaps more gentle

exposure to new strains via other individuals in the room could also prove to be beneficial. However,

the best person to have in a room may be the patient’s family member or spouse at home [62], not

another HCT patient with an antibiotic-perturbed microbiome potentially filled with pathogenic

strains.

6.2.4 Future strain-specific investigations

The HCT patient microbiome is an excellent model to study strain-specific effects, as natural exper-

iments involving selection and succession are conducted on a daily basis in each patient. My inves-

tigation of transmission only scratched the surface of the potential strain-specific research involving

these patients. Examining strain diversity during periods of antibiotic treatment or microbiome re-

covery may reveal new principles about community assembly in the human gut [187, 184]. The deep

linked read metagenomic sequencing could also be used to phase strain variants [141], which would

help identify the relative proportions and functional capabilities of each bacterial strain. Finally, I

am interested in testing why certain bacterial strains or species engraft into a recipient, while others

do not. However, separating the effects of transmission and engraftment will remain challenging.

6.2.5 Managing the microbiome in the clinic

While there were no direct clinical outcomes from this observational study, the conclusions do

highlight some relevant points for clinicians. Building on previous work showing that HCT patients

can acquire infections from their own microbiome [168, 76], this research raises the possibility that the

infectious agent can be sourced from another patient in the hospital. In cases where transmission of

bacterial strains was likely, the recipient patient had a microbiome that was extremely perturbed by

antibiotic exposure. Therefore, reducing antibiotic treatment whenever possible may further reduce

the risk of microbiome transmission. In addition, clinicians may desire to increase gut microbiome

diversity, and therefore colonization resistance, by one of the many methods available: probiotics

[29], prebiotics [8] and FMT [36, 172]. However, clinical trials are necessary to demonstrate the

safety and efficacy of these methods.
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6.2.6 Are MAGs derived from the samples of interest necessary?

I put considerable effort into generating high-quality de-novo MAGs from HCT patient samples, us-

ing deep linked-read sequencing sequencing and extensive computational assembly pipelines. How-

ever, throughout the course of the computational experiments, I started to wonder if de-novo MAGs

were truly necessary. There are now large databases of microbial genomes that should cover much

of the diversity present in a human microbiome, such as The Genome Taxonomy Database (GTDB)

[130] and the Unified Human Gastrointestinal Genome (UHGG) [5]. This is especially true for mi-

crobiome samples from western individuals and HCT patients, which often lack microbial diversity.

An alternative workflow to the de-novo MAG workflow used in the HCT transmission work follows:

1. Sequence all samples with short-read Illumina sequencing (2x150bp)

2. Map reads from all samples against GTDB

3. Select reference strains with sufficient coverage in samples from multiple patients

4. Analyze SNPs with inStrain

Eliminating the need for de-novo MAG generation will also decreases the required sequencing

depth. A few quality checks can ensure the diversity in patient samples is well-represented by the

MAG database, including:

• Examine the proportion of reads from each sample that mapped stringently to the MAG

database. Samples with a low mapping fraction may have diverse strains that are under-

represented in the database.

• Re-sequencing with a long-read technology and MAG assembly might be required for samples

that are poorly represented, but this effort could be targeted where it’s most needed.

As a sanity check in the HCT patient transmission work, I replicated all of the putative transmission

findings using a public reference genome rather than the sample-derived MAG. Therefore, I believe

the same results could have been obtained using a MAG database instead of of the sample-derived

MAGs. Alternatively, MAGs could still be created from patient samples, and a database combining

GTDB and patient-derived MAGs could be used for short read mapping. This hybrid approach

would fill in areas missing in one of the genome collections.

6.3 Conclusions

Throughout my PhD research, I studied transmission of human gut microbiota under two extremes:

infants as the microbiome developed, and HCT patients as the microbiome recovered from antibiotic

treatment, chemotherapy and radiation. These two settings are some of the most likely to result in
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microbiome transmission, outside of the drastic therapy of FMT. First, I characterized transmission

of crAss-like phages from the microbiome of a mother to the microbiome of her infant, discovering

that transmission was common during the first year of life. Tracking strain-specific variants in

the phage population revealed that strain diversity was reduced upon mother-infant transmission,

as would be expected given a population bottleneck. This work highlighted that mother-infant

transmission of crAss-like phages is likely to be a part of normal infant development, and posed the

question that crAss-like phages may have been transmitted along the maternal line for millennia,

much like mitochondrial DNA.

In adult patients recovering from HCT, I found that microbiome transmission of bacteria is likely

to be rare and limited to cases where patients are roommates and have microbiomes recovering from

antibiotic exposure. In the case of Enterococcus faecium, individuals who were not roommates

appeared to share nearly identical strains, indicating that these strains may be acquired through

unsampled intermediates or from the hospital environment. Transmission of the commensal microbes

Hungatella hathewayi and Akkermansia muciniphila was limited to cases where the two patients

were roommates and the recipient patient was recovering from antibiotic treatment initiated for a

bloodstream infection. The time course sampling, deep metagenomic sequencing, and careful analysis

in these cases gives me confidence that patient-patient transmission is a true phenomenon. Overall,

these results point to the resilience of the adult microbiome. Even under the extreme pressures from

HCT and antibiotic treatment, microbiome transmission remained rare, and the patients did not

appear to acquire common pathogenic strains into their gut.

The developing infant and HCT patient microbiome are excellent settings to study strain specific

effects, as natural experiments of colonization and succession are conducted daily on the microbial

communities. I hope that future strain specific microbiome research teaches us more about the

overarching ecological principles shaping the microbial communities living on and within us.
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[28] M. Cervantes-Echeverŕıa. “Whole-genome of Mexican-crAssphage isolated from the human

gut microbiome”. In: BMC Res. Notes 11 (2018). doi: 10.1186/s13104-018-4010-5. url:

https://doi.org/10.1186/s13104-018-4010-5.

[29] Children’s Oncology Group. The Effectiveness of Lactobacillus Plantarum (LBP, IND# 17339)

in Preventing Acute Graft-Versus-Host Disease (GvHD) in Children Undergoing Alternative

Hematopoietic Progenitor Cell Transplantation (HCT). Clinical trial registration NCT03057054.

clinicaltrials.gov, Aug. 23, 2021. url: https://clinicaltrials.gov/ct2/show/NCT03057054

(visited on 10/06/2021).

[30] O. Cinek. “Quantitative CrAssphage real-time PCR assay derived from data of multiple

geographically distant populations”. In: J. Med. Virol. 90 (2018). doi: 10.1002/jmv.25012.

url: https://doi.org/10.1002/jmv.25012.

[31] P. Cingolani. “A program for annotating and predicting the effects of single nucleotide poly-

morphisms, SnpEff”. In: Fly 6 (2012). doi: 10.4161/fly.19695. url: https://doi.org/

10.4161/fly.19695.

[32] F. D’Amico. “Gut resistome plasticity in pediatric patients undergoing hematopoietic stem

cell transplantation.” In: Sci. Rep. (2019).

[33] C. E. Dandoy. “Bacterial bloodstream infections in the allogeneic hematopoietic cell trans-

plant patient: new considerations for a persistent nemesis.” In: Bone Marrow Transplant.

(2017). doi: doi:10.1038/s41587-019-0191-2.

https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1038/nmeth.3176
https://doi.org/10.1016/j.cell.2010.05.009
https://doi.org/10.1016/j.cell.2010.05.009
https://doi.org/10.1016/j.cell.2021.01.029
https://doi.org/10.1016/j.cell.2021.01.029
https://www.sciencedirect.com/science/article/pii/S0092867421000726
https://www.sciencedirect.com/science/article/pii/S0092867421000726
https://doi.org/10.1186/s13104-018-4010-5
https://doi.org/10.1186/s13104-018-4010-5
https://clinicaltrials.gov/ct2/show/NCT03057054
https://doi.org/10.1002/jmv.25012
https://doi.org/10.1002/jmv.25012
https://doi.org/10.4161/fly.19695
https://doi.org/10.4161/fly.19695
https://doi.org/10.4161/fly.19695
https://doi.org/doi:10.1038/s41587-019-0191-2


114 BIBLIOGRAPHY

[34] P. Danecek. “The variant call format and VCFtools”. In: Bioinformatics 27 (2011). doi:

10.1093/bioinformatics/btr330. url: https://doi.org/10.1093/bioinformatics/

btr330.

[35] Diwakar Davar et al. “Fecal microbiota transplant overcomes resistance to anti–PD-1 therapy

in melanoma patients”. In: Science 371.6529 (Feb. 5, 2021), pp. 595–602. issn: 0036-8075,

1095-9203. doi: 10.1126/science.abf3363. url: http://science.sciencemag.org/

content/371/6529/595 (visited on 02/05/2021).

[36] Zachariah DeFilipp et al. “Third-party fecal microbiota transplantation following allo-HCT

reconstitutes microbiome diversity”. In: Blood Advances 2.7 (Apr. 10, 2018), pp. 745–753.

issn: 2473-9529, 2473-9537. doi: 10.1182/bloodadvances.2018017731. url: http://www.

bloodadvances.org/content/2/7/745 (visited on 01/29/2019).

[37] A. L. Delcher et al. “Alignment of whole genomes”. In: Nucleic Acids Res 27 (1999). doi:

10.1093/nar/27.11.2369. url: https://doi.org/10.1093/nar/27.11.2369.

[38] Centers for Disease Control and Prevention (U.S.) “Diseases and Organisms in Healthcare

Setting”. In: (2019). doi: doi:10.1038/s41587-020-00797-0. url: https://www.cdc.

gov/hai/organisms/organisms.html.

[39] Y. Doi et al. “Community-associated extended-spectrum -lactamase-producing Escherichia

coli infection in the United States”. In: Clin Infect Dis 56 (2013). doi: 10.1093/cid/cis942.

url: https://doi.org/10.1093/cid/cis942.

[40] M. G. Dominguez-Bello. “Delivery mode shapes the acquisition and structure of the ini-

tial microbiota across multiple body habitats in newborns”. In: Proc. Natl Acad. Sci. USA.

107 (2010). doi: 10.1073/pnas.1002601107. url: https://doi.org/10.1073/pnas.

1002601107.

[41] L. A. Draper. “Long-term colonisation with donor bacteriophages following successful faecal

microbial transplantation”. In: Microbiome 6 (2018). doi: 10.1186/s40168-018-0598-x.

url: https://doi.org/10.1186/s40168-018-0598-x.

[42] K. Dubin. “Enterococci and Their Interactions with the Intestinal Microbiome.” In: Bugs

Drugs (2018).

[43] K. A. Dubin. “Diversification and Evolution of Vancomycin-Resistant Enterococcus faecium

during Intestinal Domination.” In: Infect. Immun. (2019).

[44] B. E. Dutilh. “A highly abundant bacteriophage discovered in the unknown sequences of

human faecal metagenomes”. In: Nat. Commun. 5 (2014). doi: 10.1038/ncomms5498. url:

https://doi.org/10.1038/ncomms5498.

[45] “Edwards, R. A. et al. Global phylogeography and ancient evolution of the widespread human

gut virus crAssphage. Nat. Microbiol. 4, 1727–1736 (2019).” In: ().

https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1126/science.abf3363
http://science.sciencemag.org/content/371/6529/595
http://science.sciencemag.org/content/371/6529/595
https://doi.org/10.1182/bloodadvances.2018017731
http://www.bloodadvances.org/content/2/7/745
http://www.bloodadvances.org/content/2/7/745
https://doi.org/10.1093/nar/27.11.2369
https://doi.org/10.1093/nar/27.11.2369
https://doi.org/doi:10.1038/s41587-020-00797-0
https://www.cdc.gov/hai/organisms/organisms.html
https://www.cdc.gov/hai/organisms/organisms.html
https://doi.org/10.1093/cid/cis942
https://doi.org/10.1093/cid/cis942
https://doi.org/10.1073/pnas.1002601107
https://doi.org/10.1073/pnas.1002601107
https://doi.org/10.1073/pnas.1002601107
https://doi.org/10.1186/s40168-018-0598-x
https://doi.org/10.1186/s40168-018-0598-x
https://doi.org/10.1038/ncomms5498
https://doi.org/10.1038/ncomms5498


BIBLIOGRAPHY 115

[46] Oana M. Enache et al. “The GCTx format and cmap{Py, R, M, J} packages: resources for

optimized storage and integrated traversal of annotated dense matrices”. In: Bioinformatics

(Oxford, England) 35.8 (Apr. 15, 2019), pp. 1427–1429. issn: 1367-4811. doi: 10.1093/

bioinformatics/bty784.

[47] Philip A. Ewels et al. “The nf-core framework for community-curated bioinformatics pipelines”.

In: Nature Biotechnology 38.3 (Mar. 2020), pp. 276–278. issn: 1546-1696. doi: 10.1038/

s41587- 020- 0439- x. url: http://www.nature.com/articles/s41587- 020- 0439- x

(visited on 10/03/2021).

[48] C. Ewers. “CTX-M-15-D-ST648 Escherichia coli from companion animals and horses: another

pandemic clone combining multiresistance and extraintestinal virulence?” In: J. Antimicrob.

Chemother. (2014).

[49] A. D. Fernandes. “Unifying the analysis of high-throughput sequencing datasets: characteriz-

ing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional

data analysis”. In: Microbiome 2 (2014). doi: 10.1186/2049- 2618- 2- 15. url: https:

//doi.org/10.1186/2049-2618-2-15.

[50] P. Ferretti. “Mother-to-infant microbial transmission from different body sites shapes the

developing infant gut microbiome”. In: Cell Host Microbe 24 (2018). doi: 10.1016/j.chom.

2018.06.005. url: https://doi.org/10.1016/j.chom.2018.06.005.

[51] S. C. Forster. “A human gut bacterial genome and culture collection for improved metage-

nomic analyses.” In: Nat. Biotechnol. (2019).

[52] T. Fukami. “Historical Contingency in Community Assembly: Integrating Niches, Species

Pools, and Priority Effects.” In: Annu. Rev. Ecol. Evol. Syst. (2015).

[53] “Garrison, E. & G., M. Haplotype-based variant detection from short-read sequencing. Preprint

at https://arxiv.org/abs/1207.3907 (2012).” In: (). url: https://arxiv.org/abs/1207.

3907.

[54] Nandita R. Garud et al. “Evolutionary dynamics of bacteria in the gut microbiome within

and across hosts”. In: PLOS Biology 17.1 (Jan. 23, 2019), e3000102. issn: 1545-7885. doi:

10.1371/journal.pbio.3000102. url: https://journals.plos.org/plosbiology/

article?id=10.1371/journal.pbio.3000102 (visited on 11/08/2019).

[55] M. G. K. Ghequire. “Different ancestries of R tailocins in rhizospheric pseudomonas isolates”.

In: Genome Biol. Evol. 7 (2015). doi: 10.1093/gbe/evv184. url: https://doi.org/10.

1093/gbe/evv184.

[56] A. Giraud. “Dissecting the Genetic Components of Adaptation of Escherichia coli to the

Mouse Gut.” In: PLOS Genet. (2008).

https://doi.org/10.1093/bioinformatics/bty784
https://doi.org/10.1093/bioinformatics/bty784
https://doi.org/10.1038/s41587-020-0439-x
https://doi.org/10.1038/s41587-020-0439-x
http://www.nature.com/articles/s41587-020-0439-x
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.1186/2049-2618-2-15
https://doi.org/10.1016/j.chom.2018.06.005
https://doi.org/10.1016/j.chom.2018.06.005
https://doi.org/10.1016/j.chom.2018.06.005
https://arxiv.org/abs/1207.3907
https://arxiv.org/abs/1207.3907
https://doi.org/10.1371/journal.pbio.3000102
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000102
https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000102
https://doi.org/10.1093/gbe/evv184
https://doi.org/10.1093/gbe/evv184
https://doi.org/10.1093/gbe/evv184


116 BIBLIOGRAPHY

[57] E. Goz et al. “Evidence of translation efficiency adaptation of the coding regions of the

bacteriophage lambda”. In: DNA Res. 24 (2017). doi: 10.1093/dnares/dsx005. url: https:

//doi.org/10.1093/dnares/dsx005.

[58] Z. Gu et al. “Circlize implements and enhances circular visualization in R”. In: Bioinformat-

ics. 30 (2014). doi: 10.1093/bioinformatics/btu393. url: https://doi.org/10.1093/

bioinformatics/btu393.

[59] E. Guerin et al. “Biology and Taxonomy of crAss-like Bacteriophages, the Most Abundant

Virus in the Human Gut”. In: Cell Host & Microbe 24 (2018). doi: 10.1016/j.chom.2018.

10.002. url: https://doi.org/10.1016/j.chom.2018.10.002.

[60] A. Gurevich et al. “QUAST: quality assessment tool for genome assemblies”. In: Bioinfor-

matics 29 (2013). doi: 10.1093/bioinformatics/btt086. url: https://doi.org/10.

1093/bioinformatics/btt086.

[61] E. A. Gurnee. “Gut Colonization of Healthy Children and Their Mothers With Pathogenic

Ciprofloxacin-Resistant Escherichia coli.” In: J. Infect. Dis. (2015).
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analysis pipelines with bioinformatics workflow managers”. In: Nature Methods (Sept. 23,

2021), pp. 1–8. issn: 1548-7105. doi: 10.1038/s41592-021-01254-9. url: http://www.

nature.com/articles/s41592-021-01254-9 (visited on 10/03/2021).

https://doi.org/10.1113/jphysiol.2009.174136
https://onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2009.174136
https://onlinelibrary.wiley.com/doi/abs/10.1113/jphysiol.2009.174136
https://doi.org/doi:10.1038/s41409-018-0414-z
https://doi.org/doi:10.1038/s41409-018-0414-z
https://doi.org/10.1101/2021.09.30.462616
https://www.biorxiv.org/content/10.1101/2021.09.30.462616v1
https://www.biorxiv.org/content/10.1101/2021.09.30.462616v1
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1186/gb-2014-15-3-r46
https://doi.org/10.1038/s41592-021-01254-9
http://www.nature.com/articles/s41592-021-01254-9
http://www.nature.com/articles/s41592-021-01254-9


BIBLIOGRAPHY 127

[192] Y. W. Wu, B. A. Simmons, and S. W. Singer. “MaxBin 2.0: an automated binning algorithm

to recover genomes from multiple metagenomic datasets”. In: Bioinformatics 32 (2016). doi:

10.1093/bioinformatics/btv638. url: https://doi.org/10.1093/bioinformatics/

btv638.

[193] Eitan Yaffe and David A. Relman. “Tracking microbial evolution in the human gut using

Hi-C reveals extensive horizontal gene transfer, persistence and adaptation”. In: Nature Mi-

crobiology 5.2 (Feb. 2020), pp. 343–353. issn: 2058-5276. doi: 10.1038/s41564-019-0625-0.

url: http://www.nature.com/articles/s41564-019-0625-0 (visited on 10/03/2021).

[194] Jinyuan Yan et al. A compilation of fecal microbiome shotgun metagenomics from hospitalized

patients undergoing hematopoietic cell transplantation. Aug. 25, 2021, p. 2021.08.23.457365.

doi: 10.1101/2021.08.23.457365. url: https://www.biorxiv.org/content/10.1101/

2021.08.23.457365v2 (visited on 09/21/2021).

[195] M. Yassour. “Strain-level analysis of mother-to-child bacterial transmission during the first

few months of life”. In: Cell Host Microbe 24 (2018). doi: 10.1016/j.chom.2018.06.007.

url: https://doi.org/10.1016/j.chom.2018.06.007.

[196] Idan Yelin et al. “Genomic and epidemiological evidence of bacterial transmission from pro-

biotic capsule to blood in ICU patients”. In: Nature Medicine 25.11 (Nov. 2019). Number: 11

Publisher: Nature Publishing Group, pp. 1728–1732. issn: 1546-170X. doi: 10.1038/s41591-

019-0626-9. url: http://www.nature.com/articles/s41591-019-0626-9 (visited on

10/26/2020).

[197] S. H. Yi. “Prevalence of probiotic use among inpatients: A descriptive study of 145 U.S.

hospitals.” In: Am. J. Infect. Control (2016).

[198] J.-A. H. Young. “Infections after Transplantation of Bone Marrow or Peripheral Blood Stem

Cells from Unrelated Donors”. In: Biol. Blood Marrow Transplant. (2016). doi: doi:10.

1038/s41591-018-0202-8.

[199] N. Yutin. “Discovery of an expansive bacteriophage family that includes the most abundant

viruses from the human gut”. In: Nat. Microbiol. 3 (2018). doi: 10.1038/s41564-017-0053-

y. url: https://doi.org/10.1038/s41564-017-0053-y.

[200] B. Zhai. “High-resolution mycobiota analysis reveals dynamic intestinal translocation pre-

ceding invasive candidiasis.” In: Nat. Med. (2020).

[201] Yan Zhang et al. “Effects of probiotic type, dose and treatment duration on irritable bowel

syndrome diagnosed by Rome III criteria: a meta-analysis”. In: BMC Gastroenterology 16.1

(Dec. 2016). Number: 1 Publisher: BioMed Central, pp. 1–11. issn: 1471-230X. doi: 10.1186/

s12876-016-0470-z. url: http://bmcgastroenterol.biomedcentral.com/articles/10.

1186/s12876-016-0470-z (visited on 10/08/2021).

https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1093/bioinformatics/btv638
https://doi.org/10.1038/s41564-019-0625-0
http://www.nature.com/articles/s41564-019-0625-0
https://doi.org/10.1101/2021.08.23.457365
https://www.biorxiv.org/content/10.1101/2021.08.23.457365v2
https://www.biorxiv.org/content/10.1101/2021.08.23.457365v2
https://doi.org/10.1016/j.chom.2018.06.007
https://doi.org/10.1016/j.chom.2018.06.007
https://doi.org/10.1038/s41591-019-0626-9
https://doi.org/10.1038/s41591-019-0626-9
http://www.nature.com/articles/s41591-019-0626-9
https://doi.org/doi:10.1038/s41591-018-0202-8
https://doi.org/doi:10.1038/s41591-018-0202-8
https://doi.org/10.1038/s41564-017-0053-y
https://doi.org/10.1038/s41564-017-0053-y
https://doi.org/10.1038/s41564-017-0053-y
https://doi.org/10.1186/s12876-016-0470-z
https://doi.org/10.1186/s12876-016-0470-z
http://bmcgastroenterol.biomedcentral.com/articles/10.1186/s12876-016-0470-z
http://bmcgastroenterol.biomedcentral.com/articles/10.1186/s12876-016-0470-z


128 BIBLIOGRAPHY

[202] G. Zhao. “Intestinal virome changes precede autoimmunity in type I diabetes-susceptible

children”. In: Proc. Natl Acad. Sci. USA 114 (2017). doi: 10.1073/pnas.1706359114. url:

https://doi.org/10.1073/pnas.1706359114.

[203] G. X. Zheng et al. “Haplotyping germline and cancer genomes with high-throughput linked-

read sequencing”. In: Nat Biotechnol 34 (2016). doi: 10.1038/nbt.3432. url: https:

//doi.org/10.1038/nbt.3432.

[204] N. Zmora. “Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is As-

sociated with Unique Host and Microbiome Features.” In: Cell (2018). doi: doi:10.1101/

2021.03.02.433653.

https://doi.org/10.1073/pnas.1706359114
https://doi.org/10.1073/pnas.1706359114
https://doi.org/10.1038/nbt.3432
https://doi.org/10.1038/nbt.3432
https://doi.org/10.1038/nbt.3432
https://doi.org/doi:10.1101/2021.03.02.433653
https://doi.org/doi:10.1101/2021.03.02.433653

	Abstract
	Acknowledgments
	Introduction
	The developing human microbiome and strain acquisition
	What is known about microbiome transmission between adults? 
	Measuring transmission of the microbiome 
	Determining transmission between two gut microbiome samples
	How close do strains need to be for them to be “the same?”
	Strains matter in the microbiome


	Intestinal microbiota domination under extreme selective pressures characterized by metagenomic read cloud sequencing and assembly
	Abstract
	Introduction
	Results
	Microbiome composition and diversity across the clinical time course
	Assembly of draft genomes
	Detection of resistance genes
	Comparative genomic analysis of E. coli strains
	Antibiotic resistance genes in pre-transplant E. coli strain

	Discussion
	Conclusion
	Methods
	Sample preparation and sequencing
	Quality control of reads
	Taxonomic classification of reads and diversity calculation
	Generation of organism draft genomes
	Comparative genomic analysis
	Antibiotic resistance gene detection

	Figures
	Tables

	Acquisition, transmission and strain diversity of human gut-colonizing crAss-like phages
	Abstract
	Introduction
	Results
	Presence of p-crAssphage in mother and infant microbiomes.
	Putative vertical transmission of p-crAssphage.
	Strain diversity in the p-crAssphage population.
	Acquisition and transmission of crAss-like phages.
	Similar p-crAssphage genomes found in FMT donors and recipients.

	Discussion
	Methods
	Kraken2 classification.
	Assembling and comparing crAss-like phage genomes.
	SNPs and multiallelic sites.
	CrAss-like phage correlation with bacterial abundance.
	FMT data analysis.

	Figures
	Supplementary Figures

	Rare transmission of commensal and pathogenic bacteria in the gut microbiome of hospitalized adults
	Abstract
	Introduction
	Results
	Sample characteristics and patient geography
	Metagenomic sequencing, assembly and binning
	Classification of abundant Healthcare-associated Infection organisms
	Detection of E. coli and E. faecium becomes more common during a patient’s hospital stay
	Antibiotic use and its effect on HCT patient microbiomes
	Patients who share time and space in the hospital do not converge in microbiome composition or frequently share strains
	HAI organisms that colonize HCT patient microbiomes are part of known, antibiotic resistant and globally disseminated clades
	Nearly identical strains indicative of putative patient-patient Enterococcus faecium, but not Escherichia coli transmission
	Putative transmission of commensal bacteria
	Widespread strain sharing of commercially available probiotic organisms

	Discussion
	Methods
	Cohort selection
	DNA Extraction, library preparation and sequencing
	Sequence data processing
	Short-read classification with Kraken2
	Assembly and binning
	Genome de-replication and SNP profiling
	Building phylogenetic trees
	Determining transmission thresholds
	Pairwise MAG comparison
	Antibiotic resistance gene detection 
	Isolation, culture and identification of VRE organisms

	Supplemental note: Mitigation of laboratory contamination and barcode swapping
	Figures
	Supplementary Figures
	Tables

	Building bioinformatics workflows for scalability and reproducibility
	Use a workflow management system
	Use established and validated pipelines when possible
	Treat metadata as a first-class citizen
	Leverage high-performance computing or cloud infrastructure
	Best practices for developing bioinformatics workflows

	Future directions and conclusions
	Future directions of the mother-infant crAss-like phage transmission work
	Extension to other phages
	Discovering bacterial hosts of novel phages
	Quantifying bacterial strain diversity upon transmission

	Future directions of the HCT patient transmission work
	Validation, replication and extension of this work
	HCT patients often acquire new bacterial strains. Where do they come from?
	Are roommates at risk for colonization with pathogenic bacteria? 
	Future strain-specific investigations
	Managing the microbiome in the clinic
	Are MAGs derived from the samples of interest necessary? 

	Conclusions


